Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Knochen nicht mehr wachsen

23.09.2002


Max-Planck-Forscher entschlüsseln Regulierung der Knochenentwicklung und eröffnen damit neue Therapiemöglichkeiten für skelettären Kleinwuchs (Achondroplasie)


Achondroplasie ist die häufigste Form des skelettären Kleinwuchses beim Menschen: im Verhältnis zum Rumpf sind bei Achondroplasie-Patienten besonders die Arme und Beine stark verkürzt. Dem liegt eine genetische Mutation zugrunde. Sie führt zur Aktivierung eines Signalweges für eine Gruppe von Wachstumsfaktoren, den so genannten "Fibroblast Growth Factors" (FGF). Dadurch wird die Teilung und Differenzierung von Knorpel- sowie Knochenzellen vor allem in den langen Röhrenknochen der Gliedmaßen stark gestört. Am Max-Planck-Institut für molekulare Genetik in Berlin ist es Wissenschaftlern der Arbeitsgruppe von Andrea Vortkamp jetzt gelungen, das für diesen Signalweg verantwortliche übergeordnete Kontrollsystem aufzudecken und damit einen neuen Ansatz für eine gezielte Therapie aufzuzeigen. (Developmental Cell, 13. September 2002).


Die bei Achondroplasie-Betroffenen am stärksten verkürzten, so genannten langen Röhrenknochen bilden sich während der Embryonalentwicklung in einem komplizierten Differenzierungsprozess (der so genannten endochondralen Ossifikation). Im Zuge dieses Prozesses wird aus Knorpelzellen, den Chondrozyten, zunächst ein Modell des späteren Knochens angelegt. Diese knorpelige Skelettanlage wächst durch Teilung der Knorpelzellen. Gleichzeitig beginnen die Zellen im Zentrum der Knochenanlage, sich in so genannte hypertrophe Chondrozyten zu differenzieren: sie beenden die Zellteilung, vergrößern sich und verändern dabei ihre physiologischen Eigenschaften und zwar derart, dass sie in einem weiteren Schritt durch Knochen ersetzt werden können. Beide Schritte, die Zellteilung und die hypertrophe Differenzierung, tragen zum Wachstum der Knochen bei. Doch erst die Aufrechterhaltung eines Gleichgewichts zwischen Zellteilung und hypertropher Differenzierung garantiert das Längenwachstum der Knochen. Die Knorpelbereiche der Skelettanlage, also die Wachstumszonen, sind für das Längenwachstum der Knochen nicht nur vor, sondern auch nach der Geburt verantwortlich. Erst mit Abschluss der Pubertät wird beim Menschen der Knorpel in den Wachstumszonen vollständig durch Knochen ersetzt und damit das Wachstum eingestellt.

"Abb. 1: Mäuse mit Achondroplasie sind im Vergleich zu Wildtyp-Mäusen durch Kleinwuchs, verkürzte Gliedmaßen und eine flache Kopfform gekennzeichnet. "


"Foto: MPI für molekulare Genetik"

Bereits vor einigen Jahren konnten Wissenschaftler zeigen, dass Achondroplasie durch Mutationen in einem Gen verursacht wird, das die Bauanleitung für einen Rezeptor trägt, den ‚Fibroblast Growth Factor Rezeptor 3’ (FGFR3). Normalerweise wird dieser Rezeptor erst aktiv, wenn ein bestimmter Wachstumsfaktor mit dem Kürzel FGF an ihn bindet. Bei der zu Achondroplasie führenden Mutation ist der Rezeptor jedoch kontinuierlich aktiv - quasi wie ein EIN/AUS-Schalter, der eingeschaltet bleibt. Damit kommt es zu einer künstlichen Aktivierung der von FGF gesteuerten Differenzierungsprozesse. Trotz dieser Erkenntnisse und obgleich Achondroplasie eine der häufigsten Ursachen für angeborenen Kleinwuchs ist, konnten bisher jedoch keine effektiven Therapien entwickelt werden. Auch die Einnahme von Wachstumshormonen zeigt bei Achondroplasie im Gegensatz zu anderen, hormonell bedingten Kleinwuchsformen nur eine sehr begrenzte therapeutische Wirkung und führt zu keiner effizienten Steigerung der endgültigen Körpergröße.

"Abb. 2: Knorpel- und Knochenzellen in der Wachstumszone."
"Foto: MPI für molekulare Genetik"

Mit der Übertragung der Mutation auf Mäuse haben die Wissenschaftler inzwischen ein Tiermodell in der Hand, welches die Erforschung der Achondroplasie wesentlich erleichtert. Ähnlich wie beim Menschen treten bei diesen Mäusen verkürzte Gliedmassen und eine für diesen genetischen Defekt charakteristische Kopfform auf. Die dauerhafte Aktivierung des FGFR3-Signalweges führt bei Mäusen zu einer dramatischen Veränderung der Knochendifferenzierung mit dem Ergebnis, dass die Wachstumszonen mit den sich teilenden und differenzierenden Knorpelzellen stark verkleinert sind.

Im Zentrum des Interesses der Arbeitsgruppe von Andrea Vortkamp steht die Entschlüsselung eines Netzwerkes, das die Proliferation (Zellteilung) und Differenzierung der Knorpel- und Knochenentwicklung steuert. Dabei konnten die Max-Planck-Forscher zunächst einmal bestätigen, dass FGF-Signale in diesem Prozess eine bedeutende Rolle spielen - sie hemmen nämlich die Proliferation. Darüber hinaus verzögern sie nicht - wie ursprünglich angenommen - den Differenzierungsprozess der Knorpelzellen, sondern beschleunigen ihn. Dadurch werden der Wachstumszone vermehrt Knorpelzellen entzogen. Neben der verminderten Proliferation trägt somit eine beschleunigte Differenzierung zur reduzierten Länge der Skelettanlagen bei Achondroplasie-Trägern bei.

"Abb. 3: FGF- und BMP-Signale haben entgegengesetzte Wirkungen auf die Entwicklung der Knorpelzellen. "
"Darstellung: MPI für molekulare Genetik"

Um die molekulare Basis von Differenzierungsstörungen zu verstehen, ist die korrekte Interpretation eines Signalweges eine Grundvoraussetzung. Darüber hinaus ist es für die Entwicklung gezielter Therapien unverzichtbar, das für einen Signalweg bestehende übergeordnete Kontrollsystem zu identifizieren. Die Berliner Wissenschaftler haben deshalb die Funktion einer weiteren Familie von Wachstumsfaktoren, der so genannten "Bone Morphogenetic Proteins" (BMPs), analysiert und es ist ihnen gelungen, die beiden Signalwege, den FGF- und den BMP-Signalweg, erstmals in einem gemeinsamen Kontrollnetzwerk zusammen zu führen. Tatsächlich regulieren die BMP-Signale die gleichen Schritte der Knorpeldifferenzierung wie die FGF-Signale, allerdings in entgegengesetzter Richtung: Im Gegensatz zu den für die Achondroplasie verantwortlichen FGF-Signalen erhöhen die BMP-Signale die Proliferationsrate und verzögern die hypertrophe Differenzierung.

Vor dem Hintergrund dieser Erkenntnisse behandelten die Forscher die für die Ausbildung der Gliedmaßen verantwortlichen genetischen Anlagen einer "Achondroplasie"-Maus mit BMP-Protein. Diese Behandlung wirkte der Ausprägung der Achondroplasie-Merkmale eindeutig entgegen und führte zu einer Erhöhung der Proliferationsrate und einer verzögerten Differenzierung der Knorpelzellen. Auch wenn noch weitere Studien nötig sein werden, weisen diese Forschungsergebnisse bereits auf neue Ansatzpunkte für eine gezielte Therapie von Achondroplasie hin. "Unsere Untersuchungen zeigen, dass die Identifizierung des für Fehlbildungen verantwortlichen Gens nur ein erster Schritt ist. Erst das Verständnis, wie dieses Gen in das komplette molekulare Regulationsnetzwerk eingebettet ist, eröffnet die Chance, eine gezielte Behandlungsstrategie zu entwickeln," erklärt Andrea Vortkamp.

Originalpublikation:

Minina, E., Kreschel, C., Naski, M.C., Ornitz, D.M. and Vortkamp, A. (2002). Interaction of FGF, Ihh/Pthlh and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Developmental Cell 3, 439-449.

Weitere Informationen erhalten Sie von:

Dr. Andrea Vortkamp
Otto-Warburg-Laboratorium
Max-Planck-Institut für molekulare Genetik
Ihnestr. 73
14195 Berlin
E-Mail: vortkamp@molgen.mpg.de

Dr. Bernd Wirsing | Presseinformation
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Differenzierung FGF Kleinwuchs Knochen Knorpelzelle Mutation Mäuse Rezeptor Vortkamp Zellteilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien produzieren mehr Substanzen als gedacht
21.02.2018 | Ruhr-Universität Bochum

nachricht Der Fisch mit der Augenlampe
21.02.2018 | Eberhard Karls Universität Tübingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Designvielfalt für OLED-Beleuchtung leicht gemacht

21.02.2018 | Messenachrichten

Fraunhofer ISE unterstützt Marktentwicklung solarthermischer Kraftwerke in der MENA Region

21.02.2018 | Energie und Elektrotechnik

Wie Drohnen die Unterwelt erkunden

21.02.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics