Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wegweiser für das Zellwachstum

10.07.2008
Wenn Gewebe und Organe wachsen, müssen die Zellen wissen, in welche Richtung sie sich ausbreiten sollen. Wissenschaftler aus Kanada, Frankreich und der Universität Würzburg haben jetzt Gene identifiziert, die in der Niere, im Innenohr und im Rückenmark den Zellen die notwendigen Informationen liefern. Die Fachzeitschrift Nature Genetics berichtet darüber in ihrer aktuellen Ausgabe.

Zellen, die sich während der Embryonalentwicklung teilen und vermehren, müssen eine Ahnung davon haben, in welche Richtung das Wachstum passieren soll; sonst könnte am Ende anstelle eines funktionierenden Organs ein unförmiger Zellhaufen stehen.

"Dafür brauchen sie in einer flachen Zellschicht ein gerichtetes Signal. Schließlich weiß die einzelne Zelle ja nicht, wo rechts und wo links ist", sagt Manfred Gessler. Gessler ist Professor am Lehrstuhl für Physiologische Chemie und hat an einer Studie mitgewirkt, die drei bisher unbekannte "Wegweiser" identifizieren konnte.

Schon seit Längerem kennen Wissenschaftler eine Reihe von Genen, die Zellen sagen, wo es langgeht; drei weitere Vertreter waren bislang nur bei der Fliegenart Drosophila melanogaster untersucht worden. Dass diese neu entdeckten Gene im Zusammenspiel mit einem in der Zellwand befindlichen Protein auch bei Säugetieren - und damit auch beim Menschen - die Richtung des Wachstums steuern, konnte jetzt das international zusammengesetzte Team von Wissenschaftlern aus Toronto, Paris und Würzburg nachweisen. "Wir konnten zeigen, dass in diesem Prozess zwei Moleküle miteinander interagieren und das dritte Gen diesen Prozess steuert", so Gessler.

... mehr zu:
»Gen »Niere »Organ

Seine Arbeit verrichtet das Gen-Trio allerdings nicht im gesamten Körper: "Unsere Untersuchungen zeigen aber, dass diese Gene in mindestens drei Organen das Wachstum regeln: in der Niere, im Rückenmark und im Ohr", erklärt Gessler. In der Niere sind sie dafür verantwortlich, dass sich die so genannten Tubuli ordnungsgemäß bilden - lange Kanälchen, in denen der aus dem Blut herausgefilterte Harn konzentriert und aufbereitet wird. Arbeiten die Gene fehlerhaft, oder fallen sie bei Mäusen komplett aus, so wachsen die Tubuli nicht in Form von langen, dünnen Schläuchen. "Stattdessen werden sie kurz und breit, es entstehen große Zysten", so Gessler. Bei gehäuftem Auftreten spricht man von Zystennieren, einer wichtigen Ursache des Nierenversagens beim Menschen.

Um Längenwachstum und Ausrichtung von Zellen geht es auch im Ohr: Dort steuern die Gene die Entwicklung der Sinneszellen. Die so genannten Haarzellen finden sich in der Hörschnecke im Innenohr; sie wachsen dort normalerweise in drei Reihen von äußeren und einer Reihe von inneren Haarzellen. Ihre Aufgabe ist es, Schallwellen in Nervenimpulse umzuwandeln.

"Damit der Signalübertragungsmechanismus gut funktioniert, ist es notwendig, dass diese Reihen exakt in der richtigen Richtung angeordnet sind", erklärt Gessler. Fehler im Zusammenspiel zwischen den betreffenden Genen hätten auch hier Fehlbildungen zur Folge, die allerdings bisher nicht so detailliert untersucht wurden wie in der Niere.

"Loss of Fat4 disrupts PCP signalling and oriented cell division, leading to cystic kidney disease", Sakura Saburi et al. Advance Online Publication on Nature Genetics's website. DOI 10.1038/ng.179.

Kontakt: Prof. Manfred Gessler, T(0931) 888-4159, E-Mail: gessler@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Berichte zu: Gen Niere Organ

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics