Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Extra-Genportion schützt Pflanzen vor Licht und Hitze

11.07.2002


Modifizierte Arabidopsis thaliana gedeiht auch unter brütender Sonne

Mit einem Trick wollen britische Forscher den natürlichen Schutz von Kulturpflanzen gegen hohe Temperaturen und Licht erhöhen. Damit Pflanzen auch unter brütender Sonne gedeihen, modifizierten Forscher der University of Sheffield die Modellpflanze Ackerschmalwand (Arabidopsis thaliana), indem sie in das Genom Extra-Kopien eines Gens einbrachten, das die Produktion der so genannten Xantophyll-Synthese anregt. Auf diesem Weg entledigt sich die Pflanze selbst von überschüssiger Energie, die sonst zur Welke geführt hätte. Es bleibt fraglich, ob sich mit der Methode auch andere Erntepflanzen wie Mais oder Kartoffeln in heißeren Umgebungen entwickeln könnten, berichtet das Fachmagazin Nature.

Pflanzen benötigen zum Aufbau komplexer Substanzen Sonnenlicht. Bei grellem Sonnenlicht verlieren viele Pflanzen ihre tiefgrüne Farbe in ihren Blättern, es bilden sich gelbe Flecken, und letztendlich rollen sie sich ein und sterben ab. Bei extremer Hitze wird die Welke zusätzlich beschleunigt. Der Grund der Schädigung liegt in einem Übermaß einer Substanz, die als hochreaktive Sauerstoffspezies (ROSs) bezeichnet wird. In Pflanzen bilden sich ROSs, wenn Lichtenergie Wasser in den zellulären Kompartimenten (Chloroplasten) spaltet. Normalerweise produziert die Pflanze während der Photosynthese sehr rasch Zucker und andere komplexe Substanzen aus ROSs. Ist das Sonnenlicht aber zu stark, ist die Pflanze mit ROSs übersättigt, die die Wände der Chloroplasten schädigen.

Die Pflanze hat mehrere Möglichkeiten, eine ROS-Überladung zu vermeiden, von denen eine die Produktion von Xanthophyll ist. Überschüssige Lichtenergie wird bei der Xanthophyll-Synthese "entsorgt". Horton gelang es, durch die Einbringung von Extra-Kopien jenes Genes, welches das Schlüsselenzym für die Xanthophyll-Synthese bildet, dessen Synthese in den Chloroplasten zu verdoppeln. Wurden die Pflanzen zwei Wochen lang bei einer Temperatur von 40 Grad und einer Sonneneinstrahlung, die in etwa der Hälfte der Mittagseinstrahlung am Äquator entspricht, gezüchtet, blieben sie laut Forschern grüner und gesünder als unbehandelte Arabidopsis-Pflanzen. In die Entwicklung von Pflanzen, die selbst extreme Bedingungen tolerieren, wird große Hoffnung gelegt. Grund dafür sind die großen Herausforderungen für die Landwirtschaft, bedingt einerseits durch die wachsende Bevölkerung, andererseits durch die Klimaveränderung, die fruchtbare Ackerflächen dezimiert.

Sandra Standhartinger | pte.online
Weitere Informationen:
http://www.shef.ac.uk
http://www.nature.com

Weitere Berichte zu: Chloroplasten Hitze Pflanze ROSs Sonnenlicht

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie