Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dr. Jekyll und Mr. Hide: Mikroglia als schützender Bestandteil des Immunprivilegs im Gehirn?

05.06.2008
Das Gehirn ist normalerweise gut gegen das Immunsystem des eigenen Körpers abgegrenzt. Doch nach einem Schlaganfall können Immunzellen aus dem Blut dorthin gelangen und töten Nervenzellen in dem betroffenen Gebiet. Um dem Einhalt zu gebieten, besitzt das Nervensystem sogenannte Makrophagen, die die Eindringlinge erkennen und unschädlich machen, obwohl es sich um körpereigene Zellen handelt.
Eine wichtige Nachricht auch für die Pharma-Industrie: bei der Entwicklung anti-entzündlicher Medikamente muss dieser neue Mechanismus beachtet werden.

In den westlichen Industrieländern ist der Schlaganfall die dritthäufigste Todesursache und häufigster Grund für schwere Behinderungen.

Allein in Deutschland trifft er etwa 250.000 Menschen jährlich. Lässt sich der Verlust von Nervenzellen beim Schlaganfall aufhalten? Der Einsatz schützender Substanzen mit dem Ziel, minderdurchblutete Hirnareale vor dem Zelltod zu bewahren und dem fortschreitenden Zellverlust entgegenzuwirken, erwies sich bisher kaum als erfolgreich. Möglicherweise gibt es aber hirneigene Schutzmechanismen, deren Verständnis neue Wege eröffnet.

Es ist allgemein bekannt, dass das Nervensystem durch ein sogenanntes Immunprivileg geschützt wird, wodurch Entzündungsreaktionen verhindert werden. Dies wird z.B. durch die Blut-Hirn-Schranke gewährleistet. Im Nervensystem übernehmen vor allem Mikroglia-Zellen, die so genannten ?Makrophagen des Gehirns?, die Immunabwehr. Die Bedeutung der Mikroglia bei akuter Schädigung des Gehirns, wie etwa beim Schlaganfall und Trauma, als auch bei chronischen Gehirnschädigungen ist Gegenstand intensiver Forschung. Bislang herrschte jedoch die Meinung vor, dass die durch Schädigung aktivierten Mikrogliazellen im Gehirn das Abtöten und Beseitigen von Nervenzellen verursachen. Deshalb wurde auch schon im Experiment versucht, die Mikroglia pharmakologisch auszuschalten, um damit den Untergang von Nervenzellen nach z. B. experimentellem Schlaganfall zu verringern.

Nunmehr gibt es aber zunehmend Hinweise, dass die Mikroglia neben ihrem zerstörerischen Charakter auch eine schützende Wirkung für das Gehirn haben kann. Kürzlich gelang es einem Team von Forschern aus dem Leibniz-Institut für Neurobiologie unter Leitung von Prof. Klaus Reymann in Zusammenarbeit mit Prof. Matthias Gunzer vom Institut für Immunologie der Magdeburger Universität an einem in vitro Schlaganfallmodell zu zeigen, dass Mikrogliazellen die Fähigkeit besitzen, die unmittelbar nach einem Schlaganfall ins Nervengewebe einwandernden neutrophilen Granulozyten (also Zellen des Immunsystems im Blut) zu eliminieren. Dieser Mechanismus trägt wahrscheinlich dazu bei, nach einem Schlaganfall den Schaden an den Nervenzellen zu begrenzen.

Wie der Medizinstudent Jens Neumann in seinem gerade erschienenen Artikel im renommierten US-amerikanischen Journal of Neuroscience (Published online June 4, 2008) berichtet, sind Mikrogliazellen in der Lage, im neuronalen Gewebe äußerst effizient die neutrophilen Granulozyten zu beseitigen. Dabei handelt es sich um jene Zellpopulation, die als erste in das geschädigte Gehirnareal einwandert. Die neutrophilen Granulozyten gelten in diesem Kontext als tödlich für Nervenzellen. Das Aufeinandertreffen von Mikrogliazellen, die per se im Gehirn vorzufinden sind, und infiltrierenden neutrophilen Granulozyten war bisher nur sehr vage beleuchtet worden. In Experimenten, in denen Hirngewebe im Reagenzglas mit neutrophilen Granulozyten in Kontakt gebracht wurde, konnten Neumann und Kollegen zeigen, dass diese das ganze Hirngewebe sehr schnell durchdringen. Die Mikrogliazellen nehmen nun, sobald ein neutrophiler Granulozyt in Reichweite ist, die Jagd auf. In den meisten Fällen wird der Granulozyt einverleibt und schnell abgebaut. Durch die Anwendung der modernen 2-Photonten-Mikroskopie und Videomikroskopie konnte dieses Phänomen erstmalig visualisiert und zudem Live verfolgt werden.

Zwar ist bekannt, dass Makrophagen auch in anderen Geweben Granulozyten beseitigen können, allerdings sind diese dann bereits ?dem Tod geweiht? und unterlaufen einen programmierten Zelltod. Die Mikrogliazellen im Gehirn hingegen können interessanterweise nicht nur sterbende sondern auch lebende Granulozyten entfernen. Dass Immunzellen andere lebende körpereigene Immunzellen beseitigen können, war bisher völlig unbekannt. Nimmt man den Mikrogliazellen diese Fähigkeit, indem man die molekularen Erkennungsstrukturen auf ihrer Oberfläche hemmt, dann erhöht sich der neuronale Schaden nach einem experimentellen Schlaganfall.

Für die Pharmaforschung bedeutet dieser Befund, zukünftig anti-entzündliche Medikamente unter Berücksichtigung der besonderen Rolle der Mikroglia zu entwickeln. Die Aufklärung der an dieser Zell-Zell-Wechselwirkung beteiligten Signalwege ist Gegenstand eines Forschungsprojektes, welches im Rahmen des ?Centers of Behavioral Brain Sciences? durch das Land Sachsen-Anhalt gefördert wird.

Das Leibniz-Institut für Neurobiologie Magdeburg ist ein Zentrum für Lern- und Gedächtnisforschung. Hier werden molekulare, zelluläre, physiologische und psychologische Korrelate von Hirnplastizität untersucht.

Ansprechpartner für Redaktionen:
Prof. Klaus Reymann
Leibniz-Institut für Neurobiologie Magdeburg
Tel. 0163/6275600
e-mail: reymann@ifn-magdeburg.de

Dr. Constanze Seidenbecher | idw
Weitere Informationen:
http://www.ifn-magdeburg.de

Weitere Berichte zu: Granulozyt Immunzelle Makrophage Mikrogliazelle Schlaganfall

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie