Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Syntheseweg des Antibiotikums Kirromycin aufgeklärt

25.02.2008
Tübinger Mikrobiologen isolieren komplexen Gencluster aus Streptomyces-Bakterien

Antibiotika sind Substanzen, die von Mikroorganismen produziert werden und die das Wachstum anderer Mikroorganismen hemmen oder sie töten können. Das macht man sich in der Medizin zunutze, da unter den Bakterien etliche Krankheitserreger des Menschen sind. Einige Gruppen von Mikroorganismen wie zum Beispiel die Bodenbakterien der Gattung Streptomyces bilden besonders viele verschiedene Antibiotika.

Bereits 1972 haben Tübinger Mikrobiologen entdeckt, dass ein bestimmter Stamm namens Streptomyces collinus Tü 365 das Antibiotikum Kirromycin produziert. Es hat ein vergleichsweise enges Wirkungsspektrum und schädigt zum Beispiel Erreger wie Streptokokken und Haemophilus influenzae, die eine Reihe von Entzündungskrankheiten verursachen können, sowie Neisseria gonorrhoeae, den Erreger der Geschlechtskrankheit Gonorrhoe. Bisher wird das Antibiotikum Kirromycin nicht als Medikament genutzt. Doch wäre es prinzipiell für die Medizin interessant, da ein enges Wirkungsspektrum einen gezielten Einsatz bei vergleichsweise geringen Nebenwirkungen ermöglichen könnte.

Dr. Tilmann Weber, Dr. Kristina Laiple, Eva Pross und Prof. Wolfgang Wohlleben vom Mikrobiologischen Institut der Universität Tübingen haben in Zusammenarbeit mit Wissenschaftlern der Universität Göttingen und einer Berliner Biotechnologiefirma auf genetischer Ebene die verschlungenen Wege erforscht, auf denen das kompliziert gebaute Molekül Kirromycin in den Streptomyces-Bakterien hergestellt wird. Über ihre Forschungsergebnisse berichten sie aktuell in der Fachzeitschrift Chemistry & Biology (22. Februar 2008).

Kirromycin bringt in empfänglichen Bakterien die Proteinherstellung zum Stillstand, indem es an den sogenannten Verlängerungsfaktor EF-Tu bindet. Dieser wird gebraucht, um die Grundbausteine der Proteine aneinanderzufügen. Da der bakterielle Verlängerungsfaktor anders aufgebaut ist als der äquivalente Verlängerungsfaktor höherer Organismen stellt er eine sehr interessante Ansatzstelle für Antibiotika dar, die derzeit nicht klinisch genutzt wird. Daher sind das Kirromycin und verwandte Stoffe neben wichtigen Werkzeugen in der Proteinbiosynthese-Forschung auch interessante Kandidaten für die Medikamentenentwicklung.

In der neuen Veröffentlichung berichten die Wissenschaftler über ihre Arbeiten, die sie im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Verbundprojekts GenoMik-Plus (Genomforschung an Mikroorganismen für industrielle Produktion, Ernährung, Umwelt und Gesundheit) durchgeführt haben. Im Genom des Streptomyces-Bakteriums konnten sie die Gene identifizieren, die die Bauanleitung des Kirromycins enthalten. Indem sie einzelne Gene gezielt ausgeschaltet haben - woraufhin die Kirromycin-Herstellung ausgesetzt war - konnten sie zeigen, dass die richtigen Gene aufgefunden wurden.

Kirromycin ist ein sehr komplexes Molekül: Es besitzt eine Art langgestrecktes Rückgrat aus Kohlenstoffatomen. Die Analyse der DNA-Sequenzdaten zeigte den Forschern, dass die Biosynthese von Kirromycin einige neue, bislang nicht auf molekularer Ebene verstandene Schritte enthält. Diese illustrieren, so schreiben Tilmann Weber und seine Kollegen in ihrer Veröffentlichung, wie groß das Potenzial für die Herstellung von chemisch extrem komplexen Stoffen in den Streptomyces-Bakterien ist.

Ihre Forschungsergebnisse bilden notwendige Grundlagen, um zu verstehen, wie das Antibiotikum Kirromycin und Stoffe ähnlichen Typs in Mikroorganismen synthetisiert werden. Erst dadurch hat man die Möglichkeit, die Substanz durch molekularbiologische Techniken zu verbessern.

Nähere Informationen:

Die Publikation in "Chemistry & Biology"
Tilmann Weber, Kristina Juliane Laiple, Eva Karoline Pross, Adriana Textor, Stephanie Grond, Katrin Welzel, Stefan Pelzer, Andreas Vente, Wolfgang Wohlleben: Molecular Analysis of the Kirromycin Biosynthetic Gene Cluster revealed ?-Alanine as Precursor of the Pyridone Moiety. Chemistry & Biology, 22. Februar 2008.
Ansprechpartner:
Dr. Tilmann Weber
Mikrobiologisches Institut mit interdisziplinären Bereichen
Mikrobiologie/Biotechnologie
Auf der Morgenstelle 28
72076 Tübingen
Telefon: 0 70 71/29-78841
Fax: 0 70 71/29-5979
E-Mail: tilmann.weber@biotech.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de/
http://www.mikrobio.uni-tuebingen.de/ag_wohlleben/research_groups/ag_weber/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikro-U-Boote für den Magen

24.01.2017 | Biowissenschaften Chemie

Echoortung - Lernen, den Raum zu hören

24.01.2017 | Biowissenschaften Chemie

RWI/ISL-Containerumschlag-Index beendet das Jahr 2016 mit Rekordwert

24.01.2017 | Wirtschaft Finanzen