Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Max-Planck-Wissenschaftler enthüllen molekulare Details der Pflanzenabwehr

14.02.2008
Aller guten Dinge sind drei

Pflanzen müssen sich tagtäglich gegen Angriffe von Krankheitserregern wie Pilze, Bakterien oder Viren wehren. Dabei muss das pflanzliche Immunsystem zwischen Eigen- und Fremdproteinen unterscheiden, um den Angreifer überhaupt erkennen zu können. Viele Erreger werden schon an der Pflanzenoberfläche abgewehrt. Dieser für die Pflanze überlebenswichtige Mechanismus war bisher kaum erforscht. Wissenschaftler aus dem Max-Planck-Institut für Züchtungsforschung in Köln fanden in Experimenten heraus, dass die Pflanze drei Protein-Bausteine benötigt, um einen an der Zellmembran sitzenden Abwehrkomplex zu bilden, der den Angreifer durch gezieltes Ausscheiden von wahrscheinlich giftigen Stoffen abwehrt (Nature, Online-Ausgabe vom 14. Februar 2008).


Angreifer haben keine Chance, denn sie treffen auf ein hochkomplexes Immunsystem der Pflanze, das den Angreifer schon nach dem ersten Kontakt heftig abwehrt. Rasterelektronenmikroskopische Aufnahme einer Pilzspore, die versucht, in die Pflanze einzudringen. Bild: Max-Planck-Institut für Züchtungsforschung

Das pflanzliche Immunsystem benutzt verschiedene Waffen im Kampf gegen potenzielle Krankheitserreger. Eine frühe Waffe mit breiter Wirksamkeit wird sofort nach dem ersten Kontakt mit dem Angreifer aktiviert und verhindert ein Eindringen in die Pflanze. Jetzt konnten Kölner Max-Planck-Forscher um Chian Kwon in Zusammenarbeit mit Wissenschaftlern aus Großbritannien und Deutschland zwei weitere molekulare Puzzlesteine identifizieren, die bei dieser Form der Abwehr wichtig sind.

In Experimenten an der Ackerschmalwand (Arabidopsis thaliana) fanden die Wissenschaftler insgesamt drei verschiedene Proteine, die den so genannten SNARE-Komplex bilden, der über Tod oder Leben der Pflanzen nach Pilzbefall entscheidet. Es ist schon seit längerem bekannt, dass SNARE-Proteine im Inneren der Zelle den Transport von Stoffen mit Hilfe von kleinen Transportbehältern, den so genannten Vesikeln, steuern. Tausende solcher Vesikel ermöglichen eine beständige und geordnete Kommunikation zwischen verschiedenen Kompartimenten einer Pflanzenzelle. Die Stoffe werden durch Verschmelzen der Vesikel mit der Zellmembran frei gegeben. Neue Untersuchungen der Kölner Forscher haben ergeben, dass der SNARE-gesteuerte Vesikeltransport auch für die Abwehr von potenziellen Krankheitserregern genutzt wird. Die Wissenschaftler vermuten, dass sich in den Vesikeln ein Gift befindet, mit dem der Angreifer getötet wird.

Das SNARE-Protein PEN und dessen Funktion bei der Abwehr waren den Forschern schon bekannt. Durch Experimente mit Mutanten der Ackerschmalwand, denen jeweils spezifische Proteine fehlten, fanden die Forscher zwei weitere Proteine - SNAP und VAMP -, die zusammen mit dem PEN-Protein den dreiteiligen SNARE-Abwehrkomplex bilden. Die große Überraschung: Fällt das VAMP-Protein aus, kann es durch ein chemisch ähnlich gebautes "Ersatz-VAMP" ausgetauscht werden. "Das ist ein zusätzlicher, bisher unbekannter Zellmechanismus", sagt Chian Kwon

Die beiden austauschbaren VAMP-Proteine erfüllen wichtige Funktionen in einem weiteren Prozess, der das Wachstum von Pflanzenzellen steuert. Offenbar benutzt die Zelle die gleichen Vesikel, in deren Hülle VAMP-Proteine sitzen, für zwei unterschiedliche Zwecke: zum einen für die normalen Transportwege während der Zellstreckung und zum anderen, im Falle des Angriffs von Krankheitserregern, für eine gezielte Abwehr. "Wahrscheinlich wird nur die Fracht der Vesikel für die Abwehrreaktion ausgetauscht", so der Biologe.

Interessanterweise kann man SNARE-Proteine auch bei Tieren finden, wo sie ganz ähnliche Aufgaben bei der Steuerung des Vesikeltransports zu erfüllen haben. Dass sich Tier und Pflanze in diesem grundlegenden Abwehrmechanismus so ähnlich sind, überraschte die Forscher am meisten. Sie erwarten, dass man in Zukunft noch weitere Parallelen zwischen dem Immunsystem von Tier und Pflanze finden wird.

Originalveröffentlichung:

Chian Kwon, Christina Neu, Simone Pajonk, Hye Sup Yun, Ulrike Lipka, Matt Humphry, Stefan Bau, Marco Straus, Mark Kwaaitaal, Heike Rampelt, Farid El Kasmi, Gerd Jürgens, Jane Parker, Ralph Panstruga, Volker Lipka, and Paul Schulze-Lefert
Co-option of a default secretory pathway for plant immune responses
Nature, DOI 10.1038/nature06545 (2008)

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Krankheitserreger Pflanze Protein SNARE-Protein Vesikel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikro-U-Boote für den Magen

24.01.2017 | Biowissenschaften Chemie

Echoortung - Lernen, den Raum zu hören

24.01.2017 | Biowissenschaften Chemie

RWI/ISL-Containerumschlag-Index beendet das Jahr 2016 mit Rekordwert

24.01.2017 | Wirtschaft Finanzen