Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ulmer Wissenschaftler liefern Grundlagen zur Brennstoffzellen-Forschung

09.01.2008
Dass die Oxidation von Wasserstoff zu Wasser, eine der fundamentalen Reaktionen in der Elektrochemie und seit langem genutzt für den wichtigsten Brennstoffzellen-Typ, in ihrer Geschwindigkeit sehr stark vom verwendeten Elektrodenmaterial abhängt, ist längst bekannt.

Warum aber die Reaktion des Wasserstoffs so stark variiere, sei bisher weitgehend unverstanden, sagt Professor Wolfgang Schmickler vom Institut für Theoretische Chemie der Universität Ulm. "Eigentlich ist es eines der ältesten Themen in der Elektrochemie, ein seit rund 100 Jahren existentes und ungelöstes Problem."

Jetzt hat er nach eigener Aussage gemeinsam mit seiner Kollegin Dr. Elizabeth Santos die erste Theorie dazu entwickelt und durch Experimente belegt. Ihre Erkenntnisse, fraglos auch hoch interessante Grundlagen für die Brennstoffzellen-Forschung, haben die Ulmer Wissenschaftler kürzlich in der angesehenen Zeitschrift "Angewandte Chemie" veröffentlicht. "Mit einer enormen Resonanz", freut sich Schmickler, dokumentiert nicht zuletzt durch zahlreiche Einladungen zu Vorträgen im In- und Ausland.

Für ihn nicht überraschend. Schließlich werde weltweit auf Hochtouren an Verbesserungen der Wasserstoff-Brennstoffzelle zur Energieversorgung geforscht. Überdies seien er und seine aus Argentinien stammende Kollegin Santos seit Jahren in verschiedene nationale wie internationale Forschungsnetzwerke und Projekte eingebunden, unter anderem gefördert von der Europäischen Union, der Deutschen Forschungsgemeinschaft und vom argentinischen Staat. Im Blickpunkt dabei insbesondere: Wasserstoff als zentraler Energieträger, die Entwicklung eines effizienteren Katalysators für die Wasserstoff-Gewinnung und ein besserer Wirkungsgrad der daraus gewonnenen Energie. Untersuchen wollen Schmickler und Santos in diesem Zusammenhang unter anderem auch den Einfluss von Nanostrukturen auf Elektroden. Mit unterschiedlichsten Materialien versteht sich, zum Beispiel einer einatomigen Schicht Palladium auf Gold.

Darüber hinaus wollen sich die beiden auf Physikalische Chemie spezialisierten Ulmer Wissenschaftler künftig einem nicht minder ehrgeizigen Vorhaben widmen: "Wir wollen jetzt die Elektrokatalyse von der Sauerstoff-Seite her angehen", sagt Schmickler und vermutet: "Das ist noch schwieriger." Auch ihre jetzt vorgelegte Arbeit freilich war das Ergebnis langjähriger Überlegungen, Vermutungen, Berechnungen und Experimente, zum Teil unterstützt von weiteren Wissenschaftlern der Universitäten Ulm und Cordoba/Argentinien.

Die Frage also, wie ein Metall die Geschwindigkeit einer elektrochemischen Reaktion des Wasserstoffs beeinflusst. Abhängig vom Elektrodenmaterial mit enormen Unterschieden nämlich. "Die Geschwindigkeit verändert sich um bis zu sechs Zehner-Potenzen", macht Professor Schmickler deutlich und beschreibt einen bildhaften Vergleich: "Bei Blei verläuft die Reaktion im Ameisen-Tempo, Platin, aus gutem Grund bereits in herkömmlichen Brennstoffzellen verwendet, ermöglicht Jet-Geschwindigkeit." Aber warum?

Schmicklers und Santos' Modell zufolge erklärt sich dies durch die Aktivierungsenergie für die Anhebung der Wasserstoff-Elektronen zum so genannten Fermi-Niveau, dem jedem Metall eigenen Energie-Niveau mit folgender Eigenschaft: Alle Niveaus mit Energien unterhalb des Fermi-Niveaus sind mit Elektronen besetzt, die Niveaus darüber sind leer. Zu Beginn der Reaktion haben die Elektronen im Wasserstoffmolekül eine Energie unterhalb des Fermi-Niveaus. Damit die Reaktion stattfinden kann, müssen sie zum Fermi-Niveau angehoben werden, so dass sie auf ein leeres Niveau im Metall übergehen können.

Gleichzeitig bricht die Bindung im Molekül und es entstehen zwei positiv geladene Wasserstoff-Ionen, die im Elektrolyten weiter zu Wasser reagieren.

Je höher nun die Aktivierungsenergie, desto langsamer die Reaktion. Die Aktivierungsenergie kann aber erheblich herabgesetzt werden, wenn das Wasserstoff-Molekül stark mit gewissen Metallorbitalen, so genannten d-Bändern, am Fermi-Niveau wechselwirkt. Professor Wolfgang Schmickler: "Anschaulich ausgedrückt nutzt das System einen Effekt aus, den jeder gute Hochspringer kennt: Er windet seinen Körper so um die Latte, dass der Schwerpunkt seines Körpers unter ihr durchgeht, während sein Körper sie oberhalb passiert."

Die Lage der d-Bänder, ihre Struktur und die Stärke ihrer Wechselwirkung mit Wasserstoff schwanke sehr stark von Metall zu Metall, so Schmickler weiter. Dies erkläre die große Variation in der Reaktionsgeschwindigkeit. Nicht nur für den Ulmer Wissenschaftler ein wichtiger Aspekt: "Ein Vergleich er von uns berechneten Geschwindigkeiten mit experimentellen Daten zeigt eine gute Übereinstimmung."

Weitere Informationen: Prof. Dr. Wolfgang Schmickler, Tel. 0731/50-31340

Willi Baur | idw
Weitere Informationen:
http://www.uni-ulm.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie