Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sind wir aus Glas?

19.12.2007
Die sonderbare Mechanik lebender Zellen

Ihre Grundlagenforschungen an Lungenzellen veranlassten im Jahr 2001 Ben Fabry und Jeffrey Fredberg, zwei Wissenschaftler an der Harvard School of Public Health, die provokante Frage "Sind wir aus Glas?" aufzuwerfen, auf die erst jetzt eine Antwort gefunden wurde. Natürlich meinten sie damit nicht, dass Menschen aus Fensterglas bestehen, sondern wollten auf die verblüffende Ähnlichkeit zwischen dem mechanischen Verhalten lebender Zellen und dem einer großen Klasse unbelebter Materialen wie Schäume, Emulsionen, Pasten usw. hinweisen.

Alle diese Materialien zeigen Fließeigenschaften, die sich mit einem Potenzgesetz (z.B. für das Anwachsen der Verformung als Funktion der Zeit nach dem Anlegen einer konstanten Kraft) mit sehr kleinem Exponenten beschreiben lassen - die Signatur so genannter "weicher glasartiger Rheologie". Die Allgegenwärtigkeit dieser Potenzgesetz-Rheologie weicher Materie wurde bereits vor einigen Jahren durch den theoretischen Physiker Peter Sollich im Sinne "rauher Energielandschaften" interpretiert. In diesem Lichte deuten die Beobachtungen von Fabry und Fredberg darauf hin, dass biologische Organismen in der Nähe eines Glasübergangs leben. Der wissenschaftliche Begriff des Glasübergangs umfasst dabei jenseits des bekannten Erstarrungsübergangs, den der Glasbläser bei seiner Arbeit virtuos kontrolliert, alle nach diesem Muster verlaufenden Zustandsänderungen kondensierter Materie, bei denen sich die Dynamik plötzlich ohne sichtbare strukturelle Ursache dramatisch verlangsamt.

Könnte diese Eigenschaft Zellen helfen, ihre vielfältigen mechanischen Aufgaben, etwa als mechanisches Gerüst, bei der Krafterzeugung, Teilung, Vermehrung und Wanderung in weichem Gewebe usw. optimal zu erfüllen? Dabei sind sie nämlich den unterschiedlichsten dynamischen Störungen ausgesetzt, vom plötzlichen Zucken eines Muskels bis zum allmählichen Wachstum eines Knochens. Trotz intensiver Forschungsaktivitäten blieb der physikalische und biologische Ursprung der scheinbar sehr robusten und universellen glasartigen Dynamik von Zellen jedoch bisher unverstanden.

Wie in der aktuellen Ausgabe der Mitteilungen der Nationalen Akademie der Wissenschaften der USA (Proc. Natl. Acad. Sci. USA) berichtet wird, ist nun ein universeller Mechanismus hinter den faszinierenden Beobachtungen von weicher glasartiger Rheologie in lebenden Zellen entdeckt worden. Durch die Kombination von verschiedenen physikalischen Messtechniken und mathematischen Modellrechnungen haben drei biophysikalische Arbeitsgrupppen aus Jülich, Leipzig und München gezeigt, dass verschlaufte Lösungen von reinem polymerem Aktin auf kleinste Änderungen der Zusammensetzung oder Umgebungsbedingungen mit einer dramatischen Verlangsamung ihrer Brownschen Dynamik reagieren.

Das Polymer Aktin ist der Hauptbestandteil des Zytoskeletts (der "Knochen und Muskeln" im Inneren menschlicher und tierischer Zellen) und daher ein viel versprechendes Untersuchungsobjekt bei der Suche nach einem vereinheitlichten mikroskopischen Verständnis der Zellmechanik. Mit Hilfe hochpräziser dynamischer Lichtstreuexperimente konnte Rudolf Merkel vom Forschungszentrum Jülich diese abnorme zeitliche Verlangsamung der Dynamik nachweisen: Durch geringfügige Erniedrigung der Temperatur verbreitert sich das Spektrum der Relaxationsraten der Polymere exponentiell. Diese Eigenschaft ist auch das Schlüsselelement eines neuen mathematischen Modells der Zellmechanik, welches als "glassy wormlike chain" bezeichnet wird. Diese in Leipzig entwickelte Theorie erklärt nicht nur die Lichtstreudaten über viele Dekaden in der Zeit (von Mikrosekunden bis Stunden), sie sagt auch die komplizierten nichtlinearen mechanischen Eigenschaften richtig vorher, wie sie die Gruppe von Andreas Bausch an der Technischen Universität München gemessen hat. Im Unterschied zu Zellen und Gewebe verhalten sich Lösungen von Aktinfilamenten nämlich über lange Zeiten wie eine Flüssigkeit. Werden sie jedoch ausreichend schnell verformt, so reagieren sie mit einer breiten linearen Antwort, auf die eine ausgeprägte Versteifung folgt, wenn die angelegte Kraft erhöht wird.

Diese Eigenschaft erinnert stark an bekannte Eigenschaften von biochemisch verknüpften Aktinnetzwerken sowie von lebenden Zellen und menschlichem Gewebe (wie jeder leicht durch Ziehen an den eigenen Wangen nachprüfen kann). Wie die Forschergruppe berichtet, nimmt für Aktin der Grad der Versteifung stark mit abnehmender Temperatur zu - in Übereinstimmung mit der allgemeinen Erfahrung, dass unser Körper sich bei Kälte steif anfühlt. Bemerkenswerterweise erzeugen nicht nur die Temperatur sondern auch diverse andere physiologisch relevante Parameter exakt den gleichen Versteifungsübergang. Darüber hinaus stellen sich zunächst ganz unterschiedlich aussehende Reaktionen auf eine mechanische Krafteinwirkung als äquivalent heraus, nachdem man die Deformationsgeschwindigkeit (oder die Zeit) reskaliert. Wenn diese so genannte "rheologische Redundanz" sich auch auf lebende Zellen übertragen ließe, wie Beobachtungen nahe legen, würde das bedeuten, dass die Zellen aus einem enormen Arsenal verschiedener molekularer Mechanismen wählen könnten, um ihre mechanischen Eigenschaften einer einheitlichen und offenbar sehr universellen Gesamtfunktion anzupassen. Eine verwandte, spannende Frage betrifft die Rolle der Zellmechanik bei der Regulation der inneren biologischen Uhr, welche lebende Organismen mit einem emergenten biologischen Zeitbegriff ausstattet. Klaus Kroy vom Institut für Theoretische Physik in Leipzig formuliert es so: "Ist das physikalische Phänomen eines Glasübergangs vielleicht der Schlüssel zum Verständnis der kohärenten Verlangsamung aller Körperfunktionen von Kaltblütern oder Winterschläfern und der Fähigkeit von Bakterien, Millionen von Jahren im Permafrost zu überleben?"

Weitere Informationen:
Prof. Dr. Klaus Kroy
Telefon: 0341 97 32436
E-Mail: Klaus.Kroy@itp.uni-leipzig.de

Dr. Manuela Rutsatz | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de/presse
http://www.uni-leipzig.de/aktuell/index.php?pmnummer=2007297

Weitere Berichte zu: Aktin Beobachtung Dynamik Gewebe Temperatur Zellmechanik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften