Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sind wir aus Glas?

19.12.2007
Die sonderbare Mechanik lebender Zellen

Ihre Grundlagenforschungen an Lungenzellen veranlassten im Jahr 2001 Ben Fabry und Jeffrey Fredberg, zwei Wissenschaftler an der Harvard School of Public Health, die provokante Frage "Sind wir aus Glas?" aufzuwerfen, auf die erst jetzt eine Antwort gefunden wurde. Natürlich meinten sie damit nicht, dass Menschen aus Fensterglas bestehen, sondern wollten auf die verblüffende Ähnlichkeit zwischen dem mechanischen Verhalten lebender Zellen und dem einer großen Klasse unbelebter Materialen wie Schäume, Emulsionen, Pasten usw. hinweisen.

Alle diese Materialien zeigen Fließeigenschaften, die sich mit einem Potenzgesetz (z.B. für das Anwachsen der Verformung als Funktion der Zeit nach dem Anlegen einer konstanten Kraft) mit sehr kleinem Exponenten beschreiben lassen - die Signatur so genannter "weicher glasartiger Rheologie". Die Allgegenwärtigkeit dieser Potenzgesetz-Rheologie weicher Materie wurde bereits vor einigen Jahren durch den theoretischen Physiker Peter Sollich im Sinne "rauher Energielandschaften" interpretiert. In diesem Lichte deuten die Beobachtungen von Fabry und Fredberg darauf hin, dass biologische Organismen in der Nähe eines Glasübergangs leben. Der wissenschaftliche Begriff des Glasübergangs umfasst dabei jenseits des bekannten Erstarrungsübergangs, den der Glasbläser bei seiner Arbeit virtuos kontrolliert, alle nach diesem Muster verlaufenden Zustandsänderungen kondensierter Materie, bei denen sich die Dynamik plötzlich ohne sichtbare strukturelle Ursache dramatisch verlangsamt.

Könnte diese Eigenschaft Zellen helfen, ihre vielfältigen mechanischen Aufgaben, etwa als mechanisches Gerüst, bei der Krafterzeugung, Teilung, Vermehrung und Wanderung in weichem Gewebe usw. optimal zu erfüllen? Dabei sind sie nämlich den unterschiedlichsten dynamischen Störungen ausgesetzt, vom plötzlichen Zucken eines Muskels bis zum allmählichen Wachstum eines Knochens. Trotz intensiver Forschungsaktivitäten blieb der physikalische und biologische Ursprung der scheinbar sehr robusten und universellen glasartigen Dynamik von Zellen jedoch bisher unverstanden.

Wie in der aktuellen Ausgabe der Mitteilungen der Nationalen Akademie der Wissenschaften der USA (Proc. Natl. Acad. Sci. USA) berichtet wird, ist nun ein universeller Mechanismus hinter den faszinierenden Beobachtungen von weicher glasartiger Rheologie in lebenden Zellen entdeckt worden. Durch die Kombination von verschiedenen physikalischen Messtechniken und mathematischen Modellrechnungen haben drei biophysikalische Arbeitsgrupppen aus Jülich, Leipzig und München gezeigt, dass verschlaufte Lösungen von reinem polymerem Aktin auf kleinste Änderungen der Zusammensetzung oder Umgebungsbedingungen mit einer dramatischen Verlangsamung ihrer Brownschen Dynamik reagieren.

Das Polymer Aktin ist der Hauptbestandteil des Zytoskeletts (der "Knochen und Muskeln" im Inneren menschlicher und tierischer Zellen) und daher ein viel versprechendes Untersuchungsobjekt bei der Suche nach einem vereinheitlichten mikroskopischen Verständnis der Zellmechanik. Mit Hilfe hochpräziser dynamischer Lichtstreuexperimente konnte Rudolf Merkel vom Forschungszentrum Jülich diese abnorme zeitliche Verlangsamung der Dynamik nachweisen: Durch geringfügige Erniedrigung der Temperatur verbreitert sich das Spektrum der Relaxationsraten der Polymere exponentiell. Diese Eigenschaft ist auch das Schlüsselelement eines neuen mathematischen Modells der Zellmechanik, welches als "glassy wormlike chain" bezeichnet wird. Diese in Leipzig entwickelte Theorie erklärt nicht nur die Lichtstreudaten über viele Dekaden in der Zeit (von Mikrosekunden bis Stunden), sie sagt auch die komplizierten nichtlinearen mechanischen Eigenschaften richtig vorher, wie sie die Gruppe von Andreas Bausch an der Technischen Universität München gemessen hat. Im Unterschied zu Zellen und Gewebe verhalten sich Lösungen von Aktinfilamenten nämlich über lange Zeiten wie eine Flüssigkeit. Werden sie jedoch ausreichend schnell verformt, so reagieren sie mit einer breiten linearen Antwort, auf die eine ausgeprägte Versteifung folgt, wenn die angelegte Kraft erhöht wird.

Diese Eigenschaft erinnert stark an bekannte Eigenschaften von biochemisch verknüpften Aktinnetzwerken sowie von lebenden Zellen und menschlichem Gewebe (wie jeder leicht durch Ziehen an den eigenen Wangen nachprüfen kann). Wie die Forschergruppe berichtet, nimmt für Aktin der Grad der Versteifung stark mit abnehmender Temperatur zu - in Übereinstimmung mit der allgemeinen Erfahrung, dass unser Körper sich bei Kälte steif anfühlt. Bemerkenswerterweise erzeugen nicht nur die Temperatur sondern auch diverse andere physiologisch relevante Parameter exakt den gleichen Versteifungsübergang. Darüber hinaus stellen sich zunächst ganz unterschiedlich aussehende Reaktionen auf eine mechanische Krafteinwirkung als äquivalent heraus, nachdem man die Deformationsgeschwindigkeit (oder die Zeit) reskaliert. Wenn diese so genannte "rheologische Redundanz" sich auch auf lebende Zellen übertragen ließe, wie Beobachtungen nahe legen, würde das bedeuten, dass die Zellen aus einem enormen Arsenal verschiedener molekularer Mechanismen wählen könnten, um ihre mechanischen Eigenschaften einer einheitlichen und offenbar sehr universellen Gesamtfunktion anzupassen. Eine verwandte, spannende Frage betrifft die Rolle der Zellmechanik bei der Regulation der inneren biologischen Uhr, welche lebende Organismen mit einem emergenten biologischen Zeitbegriff ausstattet. Klaus Kroy vom Institut für Theoretische Physik in Leipzig formuliert es so: "Ist das physikalische Phänomen eines Glasübergangs vielleicht der Schlüssel zum Verständnis der kohärenten Verlangsamung aller Körperfunktionen von Kaltblütern oder Winterschläfern und der Fähigkeit von Bakterien, Millionen von Jahren im Permafrost zu überleben?"

Weitere Informationen:
Prof. Dr. Klaus Kroy
Telefon: 0341 97 32436
E-Mail: Klaus.Kroy@itp.uni-leipzig.de

Dr. Manuela Rutsatz | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de/presse
http://www.uni-leipzig.de/aktuell/index.php?pmnummer=2007297

Weitere Berichte zu: Aktin Beobachtung Dynamik Gewebe Temperatur Zellmechanik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden Hinweise auf verknotete Chromosomen im Erbgut
20.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Aus der Moosfabrik
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise