Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sind wir aus Glas?

19.12.2007
Die sonderbare Mechanik lebender Zellen

Ihre Grundlagenforschungen an Lungenzellen veranlassten im Jahr 2001 Ben Fabry und Jeffrey Fredberg, zwei Wissenschaftler an der Harvard School of Public Health, die provokante Frage "Sind wir aus Glas?" aufzuwerfen, auf die erst jetzt eine Antwort gefunden wurde. Natürlich meinten sie damit nicht, dass Menschen aus Fensterglas bestehen, sondern wollten auf die verblüffende Ähnlichkeit zwischen dem mechanischen Verhalten lebender Zellen und dem einer großen Klasse unbelebter Materialen wie Schäume, Emulsionen, Pasten usw. hinweisen.

Alle diese Materialien zeigen Fließeigenschaften, die sich mit einem Potenzgesetz (z.B. für das Anwachsen der Verformung als Funktion der Zeit nach dem Anlegen einer konstanten Kraft) mit sehr kleinem Exponenten beschreiben lassen - die Signatur so genannter "weicher glasartiger Rheologie". Die Allgegenwärtigkeit dieser Potenzgesetz-Rheologie weicher Materie wurde bereits vor einigen Jahren durch den theoretischen Physiker Peter Sollich im Sinne "rauher Energielandschaften" interpretiert. In diesem Lichte deuten die Beobachtungen von Fabry und Fredberg darauf hin, dass biologische Organismen in der Nähe eines Glasübergangs leben. Der wissenschaftliche Begriff des Glasübergangs umfasst dabei jenseits des bekannten Erstarrungsübergangs, den der Glasbläser bei seiner Arbeit virtuos kontrolliert, alle nach diesem Muster verlaufenden Zustandsänderungen kondensierter Materie, bei denen sich die Dynamik plötzlich ohne sichtbare strukturelle Ursache dramatisch verlangsamt.

Könnte diese Eigenschaft Zellen helfen, ihre vielfältigen mechanischen Aufgaben, etwa als mechanisches Gerüst, bei der Krafterzeugung, Teilung, Vermehrung und Wanderung in weichem Gewebe usw. optimal zu erfüllen? Dabei sind sie nämlich den unterschiedlichsten dynamischen Störungen ausgesetzt, vom plötzlichen Zucken eines Muskels bis zum allmählichen Wachstum eines Knochens. Trotz intensiver Forschungsaktivitäten blieb der physikalische und biologische Ursprung der scheinbar sehr robusten und universellen glasartigen Dynamik von Zellen jedoch bisher unverstanden.

Wie in der aktuellen Ausgabe der Mitteilungen der Nationalen Akademie der Wissenschaften der USA (Proc. Natl. Acad. Sci. USA) berichtet wird, ist nun ein universeller Mechanismus hinter den faszinierenden Beobachtungen von weicher glasartiger Rheologie in lebenden Zellen entdeckt worden. Durch die Kombination von verschiedenen physikalischen Messtechniken und mathematischen Modellrechnungen haben drei biophysikalische Arbeitsgrupppen aus Jülich, Leipzig und München gezeigt, dass verschlaufte Lösungen von reinem polymerem Aktin auf kleinste Änderungen der Zusammensetzung oder Umgebungsbedingungen mit einer dramatischen Verlangsamung ihrer Brownschen Dynamik reagieren.

Das Polymer Aktin ist der Hauptbestandteil des Zytoskeletts (der "Knochen und Muskeln" im Inneren menschlicher und tierischer Zellen) und daher ein viel versprechendes Untersuchungsobjekt bei der Suche nach einem vereinheitlichten mikroskopischen Verständnis der Zellmechanik. Mit Hilfe hochpräziser dynamischer Lichtstreuexperimente konnte Rudolf Merkel vom Forschungszentrum Jülich diese abnorme zeitliche Verlangsamung der Dynamik nachweisen: Durch geringfügige Erniedrigung der Temperatur verbreitert sich das Spektrum der Relaxationsraten der Polymere exponentiell. Diese Eigenschaft ist auch das Schlüsselelement eines neuen mathematischen Modells der Zellmechanik, welches als "glassy wormlike chain" bezeichnet wird. Diese in Leipzig entwickelte Theorie erklärt nicht nur die Lichtstreudaten über viele Dekaden in der Zeit (von Mikrosekunden bis Stunden), sie sagt auch die komplizierten nichtlinearen mechanischen Eigenschaften richtig vorher, wie sie die Gruppe von Andreas Bausch an der Technischen Universität München gemessen hat. Im Unterschied zu Zellen und Gewebe verhalten sich Lösungen von Aktinfilamenten nämlich über lange Zeiten wie eine Flüssigkeit. Werden sie jedoch ausreichend schnell verformt, so reagieren sie mit einer breiten linearen Antwort, auf die eine ausgeprägte Versteifung folgt, wenn die angelegte Kraft erhöht wird.

Diese Eigenschaft erinnert stark an bekannte Eigenschaften von biochemisch verknüpften Aktinnetzwerken sowie von lebenden Zellen und menschlichem Gewebe (wie jeder leicht durch Ziehen an den eigenen Wangen nachprüfen kann). Wie die Forschergruppe berichtet, nimmt für Aktin der Grad der Versteifung stark mit abnehmender Temperatur zu - in Übereinstimmung mit der allgemeinen Erfahrung, dass unser Körper sich bei Kälte steif anfühlt. Bemerkenswerterweise erzeugen nicht nur die Temperatur sondern auch diverse andere physiologisch relevante Parameter exakt den gleichen Versteifungsübergang. Darüber hinaus stellen sich zunächst ganz unterschiedlich aussehende Reaktionen auf eine mechanische Krafteinwirkung als äquivalent heraus, nachdem man die Deformationsgeschwindigkeit (oder die Zeit) reskaliert. Wenn diese so genannte "rheologische Redundanz" sich auch auf lebende Zellen übertragen ließe, wie Beobachtungen nahe legen, würde das bedeuten, dass die Zellen aus einem enormen Arsenal verschiedener molekularer Mechanismen wählen könnten, um ihre mechanischen Eigenschaften einer einheitlichen und offenbar sehr universellen Gesamtfunktion anzupassen. Eine verwandte, spannende Frage betrifft die Rolle der Zellmechanik bei der Regulation der inneren biologischen Uhr, welche lebende Organismen mit einem emergenten biologischen Zeitbegriff ausstattet. Klaus Kroy vom Institut für Theoretische Physik in Leipzig formuliert es so: "Ist das physikalische Phänomen eines Glasübergangs vielleicht der Schlüssel zum Verständnis der kohärenten Verlangsamung aller Körperfunktionen von Kaltblütern oder Winterschläfern und der Fähigkeit von Bakterien, Millionen von Jahren im Permafrost zu überleben?"

Weitere Informationen:
Prof. Dr. Klaus Kroy
Telefon: 0341 97 32436
E-Mail: Klaus.Kroy@itp.uni-leipzig.de

Dr. Manuela Rutsatz | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de/presse
http://www.uni-leipzig.de/aktuell/index.php?pmnummer=2007297

Weitere Berichte zu: Aktin Beobachtung Dynamik Gewebe Temperatur Zellmechanik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie