Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sind wir aus Glas?

19.12.2007
Die sonderbare Mechanik lebender Zellen

Ihre Grundlagenforschungen an Lungenzellen veranlassten im Jahr 2001 Ben Fabry und Jeffrey Fredberg, zwei Wissenschaftler an der Harvard School of Public Health, die provokante Frage "Sind wir aus Glas?" aufzuwerfen, auf die erst jetzt eine Antwort gefunden wurde. Natürlich meinten sie damit nicht, dass Menschen aus Fensterglas bestehen, sondern wollten auf die verblüffende Ähnlichkeit zwischen dem mechanischen Verhalten lebender Zellen und dem einer großen Klasse unbelebter Materialen wie Schäume, Emulsionen, Pasten usw. hinweisen.

Alle diese Materialien zeigen Fließeigenschaften, die sich mit einem Potenzgesetz (z.B. für das Anwachsen der Verformung als Funktion der Zeit nach dem Anlegen einer konstanten Kraft) mit sehr kleinem Exponenten beschreiben lassen - die Signatur so genannter "weicher glasartiger Rheologie". Die Allgegenwärtigkeit dieser Potenzgesetz-Rheologie weicher Materie wurde bereits vor einigen Jahren durch den theoretischen Physiker Peter Sollich im Sinne "rauher Energielandschaften" interpretiert. In diesem Lichte deuten die Beobachtungen von Fabry und Fredberg darauf hin, dass biologische Organismen in der Nähe eines Glasübergangs leben. Der wissenschaftliche Begriff des Glasübergangs umfasst dabei jenseits des bekannten Erstarrungsübergangs, den der Glasbläser bei seiner Arbeit virtuos kontrolliert, alle nach diesem Muster verlaufenden Zustandsänderungen kondensierter Materie, bei denen sich die Dynamik plötzlich ohne sichtbare strukturelle Ursache dramatisch verlangsamt.

Könnte diese Eigenschaft Zellen helfen, ihre vielfältigen mechanischen Aufgaben, etwa als mechanisches Gerüst, bei der Krafterzeugung, Teilung, Vermehrung und Wanderung in weichem Gewebe usw. optimal zu erfüllen? Dabei sind sie nämlich den unterschiedlichsten dynamischen Störungen ausgesetzt, vom plötzlichen Zucken eines Muskels bis zum allmählichen Wachstum eines Knochens. Trotz intensiver Forschungsaktivitäten blieb der physikalische und biologische Ursprung der scheinbar sehr robusten und universellen glasartigen Dynamik von Zellen jedoch bisher unverstanden.

Wie in der aktuellen Ausgabe der Mitteilungen der Nationalen Akademie der Wissenschaften der USA (Proc. Natl. Acad. Sci. USA) berichtet wird, ist nun ein universeller Mechanismus hinter den faszinierenden Beobachtungen von weicher glasartiger Rheologie in lebenden Zellen entdeckt worden. Durch die Kombination von verschiedenen physikalischen Messtechniken und mathematischen Modellrechnungen haben drei biophysikalische Arbeitsgrupppen aus Jülich, Leipzig und München gezeigt, dass verschlaufte Lösungen von reinem polymerem Aktin auf kleinste Änderungen der Zusammensetzung oder Umgebungsbedingungen mit einer dramatischen Verlangsamung ihrer Brownschen Dynamik reagieren.

Das Polymer Aktin ist der Hauptbestandteil des Zytoskeletts (der "Knochen und Muskeln" im Inneren menschlicher und tierischer Zellen) und daher ein viel versprechendes Untersuchungsobjekt bei der Suche nach einem vereinheitlichten mikroskopischen Verständnis der Zellmechanik. Mit Hilfe hochpräziser dynamischer Lichtstreuexperimente konnte Rudolf Merkel vom Forschungszentrum Jülich diese abnorme zeitliche Verlangsamung der Dynamik nachweisen: Durch geringfügige Erniedrigung der Temperatur verbreitert sich das Spektrum der Relaxationsraten der Polymere exponentiell. Diese Eigenschaft ist auch das Schlüsselelement eines neuen mathematischen Modells der Zellmechanik, welches als "glassy wormlike chain" bezeichnet wird. Diese in Leipzig entwickelte Theorie erklärt nicht nur die Lichtstreudaten über viele Dekaden in der Zeit (von Mikrosekunden bis Stunden), sie sagt auch die komplizierten nichtlinearen mechanischen Eigenschaften richtig vorher, wie sie die Gruppe von Andreas Bausch an der Technischen Universität München gemessen hat. Im Unterschied zu Zellen und Gewebe verhalten sich Lösungen von Aktinfilamenten nämlich über lange Zeiten wie eine Flüssigkeit. Werden sie jedoch ausreichend schnell verformt, so reagieren sie mit einer breiten linearen Antwort, auf die eine ausgeprägte Versteifung folgt, wenn die angelegte Kraft erhöht wird.

Diese Eigenschaft erinnert stark an bekannte Eigenschaften von biochemisch verknüpften Aktinnetzwerken sowie von lebenden Zellen und menschlichem Gewebe (wie jeder leicht durch Ziehen an den eigenen Wangen nachprüfen kann). Wie die Forschergruppe berichtet, nimmt für Aktin der Grad der Versteifung stark mit abnehmender Temperatur zu - in Übereinstimmung mit der allgemeinen Erfahrung, dass unser Körper sich bei Kälte steif anfühlt. Bemerkenswerterweise erzeugen nicht nur die Temperatur sondern auch diverse andere physiologisch relevante Parameter exakt den gleichen Versteifungsübergang. Darüber hinaus stellen sich zunächst ganz unterschiedlich aussehende Reaktionen auf eine mechanische Krafteinwirkung als äquivalent heraus, nachdem man die Deformationsgeschwindigkeit (oder die Zeit) reskaliert. Wenn diese so genannte "rheologische Redundanz" sich auch auf lebende Zellen übertragen ließe, wie Beobachtungen nahe legen, würde das bedeuten, dass die Zellen aus einem enormen Arsenal verschiedener molekularer Mechanismen wählen könnten, um ihre mechanischen Eigenschaften einer einheitlichen und offenbar sehr universellen Gesamtfunktion anzupassen. Eine verwandte, spannende Frage betrifft die Rolle der Zellmechanik bei der Regulation der inneren biologischen Uhr, welche lebende Organismen mit einem emergenten biologischen Zeitbegriff ausstattet. Klaus Kroy vom Institut für Theoretische Physik in Leipzig formuliert es so: "Ist das physikalische Phänomen eines Glasübergangs vielleicht der Schlüssel zum Verständnis der kohärenten Verlangsamung aller Körperfunktionen von Kaltblütern oder Winterschläfern und der Fähigkeit von Bakterien, Millionen von Jahren im Permafrost zu überleben?"

Weitere Informationen:
Prof. Dr. Klaus Kroy
Telefon: 0341 97 32436
E-Mail: Klaus.Kroy@itp.uni-leipzig.de

Dr. Manuela Rutsatz | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de/presse
http://www.uni-leipzig.de/aktuell/index.php?pmnummer=2007297

Weitere Berichte zu: Aktin Beobachtung Dynamik Gewebe Temperatur Zellmechanik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik