Bakterieninvasion mit Reißverschluss

Pseudomonas aeruginosa (grün) dringt mithilfe des Lipid-Reißverschlusses in ein synthetisches Vesikel ein (rot). Quelle: Thorsten Eierhoff

Der Krankenhauskeim Pseudomonas aeruginosa wickelt sich in die Membran menschlicher Zellen: Ein Team um Dr. Thorsten Eierhoff und Juniorprofessor Dr. Winfried Römer vom Institut für Biologie II, Mitglieder des Exzellenzclusters BIOSS Centre for Biological Signalling Studies der Universität Freiburg, hat untersucht, wie das Bakterium in Wirtszellen gelangt.

Dabei identifizierten sie einen neuartigen Mechanismus der Bakterieninvasion: Pseudomonas aeruginosa nutzt Lipide in der Zellmembran, um sich in Wirtszellen einzuschleusen. Das Protein LecA auf der Oberfläche der Bakterien bindet hierzu an Zucker auf besonderen Lipid-Molekülen, so genannte Gb3-Lipide, die in der Außenmembran von Menschenzellen vorkommen.

Dockt der Krankheitserreger an eine Zelle, greifen die LecA-Moleküle der Bakterien und die Gb3-Lipide der Wirtsmembran ineinander – wie bei einem Reißverschluss. Die Zellhülle umwickelt auf diese Weise Schritt für Schritt den Erreger und bringt ihn ins Zellinnere. Römer und Eierhoff wiesen den neuen Mechanismus an synthetischen Membranen und in Kulturen menschlicher Lungenzellen nach. Die Ergebnisse erscheinen in der Fachzeitschrift „Proceedings of the National Academy of Sciences“.

Pseudomonas aeruginosa kann bei Menschen mit geschwächten Abwehrkräften, besonders bei der Erbkrankheit zystische Fibrose, gefährliche Haut- und Lungenentzündungen hervorrufen. Beim Eintritt der Bakterien in Menschenzellen binden Gb3-Lipide an LecA-Proteine und krümmen die Membran.

Diese Bindung reicht aus, um das Bakterium einzuwickeln, berechnete Prof. Dr. Christian Fleck der Universität Wageningen/ Niederlande, der an der Studie beteiligt war. Bisher kannten Forscherinnen und Forscher nur Invasionsmethoden, bei denen Erreger Signale in der Wirtszelle manipulierten. Diese Signale steuern Aktinfäden, die Muskeln der Zelle: Die Fäden krümmen von Innen die Zellhülle und bilden Membranbläschen, in denen die Bakterien aufgenommen werden.

Um nachzuweisen, dass der Vorgang ohne Aktin abläuft, ließen die Forscher Pseudomonas-Bakterien auf synthetische Membranbläschen wirken. Die Bläschen enthielten weder Aktin noch sonstige Zellkomponenten – nur das Lipid Gb3. Die In-vitro-Membran stülpte sich ein und umschloss die Bakterien, als diese an der Oberfläche andockten. Der Wickelvorgang trat jedoch nur auf, wenn die Bakterien das Protein LecA produzierten.

„Der Versuch zeigt: Pseudomonas gelangt mit diesem Lipid-Reißverschluss in Zellen hinein, ohne Aktin zu manipulieren“, sagt Eierhoff. Auch in menschlichen Lungenzellen wiesen die Forscher nach, dass LecA und Gb3 für die Bakterieninvasion wichtig sind: Fehlte das Molekülpaar, ging die Zahl der Erreger, die in die Zellen eindringen, bis zu 70 Prozent zurück. Diese Ergebnisse ermöglichten es Römers Arbeitsgruppe, einen potenziellen Wirkstoff gegen Pseudomonas aeruginosa zu identifizieren. http://www.pr.uni-freiburg.de/pm/2014/pm.2014-07-09.64

Original Publikation:
T. Eierhoff, B. Bastian, R. Thuenauer, J. Madl, A. Audfray, S. Aigal, S.Juillot, G. E. Rydell, S. Müller, S. de Bentzmann, A. Imberty, C. Fleck and W. Römer (2014) A lipid zipper triggers bacterial invasion. PNAS. doi: 10.1073/pnas.1402637111

Kontakt:
Juniorprofessor Dr. Winfried Römer
BIOSS Centre for Biological Signalling Studies
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-67500
E-Mail: winfried.roemer@bioss.uni-freiburg.de

http://www.pr.uni-freiburg.de/pm/2014/pm.2014-08-20.88-en

Media Contact

Rudolf-Werner Dreier idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer