Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien produzieren Sauerstoff - sogar ohne Licht

26.03.2010
Wissenschaftler haben die molekularen Tricks entschlüsselt, mit denen ein spezielles Bakterium seinen Sauerstoffbedarf abdeckt, um das Treibhausgas Methan zu nutzen

Ein niederländisches Wissenschaftlerteam von der Radboud Universität in Nijmegen entdeckte Bakterien, die Methan ohne vorhandene Sauerstoffquelle nutzen. Statt Sauerstoff verwenden diese Nitrit, das durch intensive Düngung in landwirtschaftlich genutzten Flächen im Süßwasser reichlich vorkommt. Methan ist ein sehr reaktionsträges Molekül, von dem Wissenschaftler bislang annehmen, dass es ohne Einsatz von Sauerstoff oder Sulfat kaum abgebaut werden kann. Nun hat ein internationales Team von Wissenschaftlern aus den Niederlanden, Frankreich und Deutschland bewiesen, dass diese Bakterien doch Sauerstoff einsetzen. Diesen Sauerstoff produzieren sie wie die Pflanzen selbst, nur Licht brauchen sie dazu nicht. Der Sauerstoff kommt vom Nitrit. Bislang waren sich die Wissenschaftler einig, dass die Kunst, Sauerstoff zu produzieren den Pflanzen, den Algen und den Cyanobakterien vorbehalten war. Jetzt sind die Forscher einem neuen Mechanismus auf der Spur, der schon existierte, bevor die ersten Pflanzen auf der Erde erschienen. (Nature, 25. März 2010)


Der neu entdeckte Mikroorganismus Methylomirabilis oxyfera unter dem Fluoreszenz-Mikroskop. Bild: Max-Planck-Institut für Marine Mikrobiologie

Für die Forscher war es schwierig, die Reaktionswege der Sauerstoffproduktion nachzuvollziehen, denn der verantwortliche Mikroorganismus wächst extrem langsam und ist deshalb nur in geringer Zahl in der mikrobiellen Gemeinschaft vorhanden. Die Forscher mussten deshalb die neuesten Methoden der Genanalytik einsetzen. Mit dem metagenomischen Ansatz isolierten sie zunächst Gen-Fragmente aus der Wasserprobe, die sie anschließend sequenzierten. Was bislang weltweit nur in wenigen Fällen wirklich gelang, schafften die französischen Kollegen von Genoscope mit Spezialsoftware. Wie bei einem Puzzle konnten sie das Genom rekonstruieren.

Zur Überraschung der Forscher zeigte die vollständige Genomsequenz, dass die bekannten Gene für die Nitritreduktion fehlten und dass das Bakterium von Sauerstoff abhängt. "Die experimentellen Labordaten standen im Widerspruch zu den Genomdaten", sagt Marc Strous, der die wissenschaftlichen Arbeiten in Nijmegen koordinierte und inzwischen ans Max-Planck-Institut für Marine Mikrobiologie in Bremen gewechselt ist.

Wie kann es das Bakterium unter diesen Umständen die Energie aus der Oxidation von dem inerten Methan (CH4) mithilfe von Nitrit (NO2-) als Elektronenakzeptor ziehen? Das ist fast so schwierig, wie unter Wasser eine Fackel anzuzünden. Um dieses Paradox zu lösen, kamen die Bremer Max-Planck-Forscher um den neuen Direktor Marcel Kuypers zu Hilfe. Mit Mikrosensoren und Massenspektroskopie rückten sie dem Problem auf den Leib und bestätigten, dass das Paradox real ist. Beide Befunde aus dem Labor und aus den Genomdaten passen zusammen, aber nur, wenn das Bakterium einen besonderen Reaktionsweg zur Sauerstoffproduktion einsetzt. Diesen Sauerstoff nachzuweisen war ein langwieriges Unternehmen: Erst nach einem Jahr gelang der Doktorandin Katharina Ettwig dieser experimentelle Beweis. Sie gab dem Mikroorganismus den Namen Methylomirabilis oxyfera (wunderbarer Methan-Esser, der Sauerstoff produziert), weil dieser zwei Nitritmoleküle nutzt um daraus Stickstoffmonoxid (NO) und Sauerstoff (O2) freizusetzen. Damit kann dann das Methan oxidiert werden.

Jetzt schlagen die Wissenschaftler vor, dass dieser neu entdeckte Reaktionsweg der "missing link" ist, der vor Milliarden Jahren die Evolution der Photosynthese ermöglichte, mit der Pflanzen Sauerstoff produzieren. Die neuen Ergebnisse sollten darüber hinaus zum Anlass genommen werden, die Rolle von Düngemitteln beim Methan-Kreislauf zu überdenken.

Dieses Projekt wurde von der Netherland Organisation for Scientific Research (NWO) unterstützt.

Originalveröffentlichung:

Katharina F. Ettwig, Margaret K. Butler, Denis Le Paslier, Eric Pelletier Sophie Mangenot, Marcel M.M. Kuypers, Frank Schreiber, Johannes Zedelius, Dirk de Beer, Bas E. Dutilh, Jolein Gloerich, Hans J.C.T. Wessels, Theo van Alen Francisca Luesken, Ming L. Wu, Katinka T. van de Pas-Schoonen, Huub J.M. Op den Camp, Eva M. Janssen-Megens, Kees-Jan Francoijs, Henk Stunnenberg, Jean Weissenbach, Mike S.M. Jetten & Marc Strous
Nitrite-driven anaerobic methane oxidation by oxygenic bacteria
Nature, 25. März 2010, doi: 10.1038/nature08883
Weitere Informationen erhalten Sie von:
Prof. Dr. Marc Strous
Max-Planck-Institut für Marine Mikrobiologie, Bremen
Tel.: +49 421 2028-822
E-Mail: mstrous@mpi-bremen.de
Dr. Manfred Schlösser, Pressesprecher
Max-Planck-Institut für Marine Mikrobiologie, Bremen
Tel.: +49 421 2028-704
Fax: +49 421 2028-790
E-Mail: mschloes@mpi-bremen.de
Prof. Dr. ir. Mike Jetten
Radboud University Nijmegen
Tel.: +31 24 365-2941
E-Mail: m.jetten@science.ru.nl
Katharina Ettwig
Radboud University Nijmegen
Tel.: +31 24 365-2557
E-Mail: K.Ettwig@science.ru.nl

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau