Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aromatische Chips

04.07.2011
Druckbar, flexibel und preiswert – diese Eigenschaften versprechen Ingenieure sich von der organischen Elektronik. Wissenschaftler des Max-Planck-Instituts für Festkörperforschung und des Max-Planck-Instituts für Polymerforschung erforschen verschiedene Materialien, aus denen sich rollbare Bildschirme oder billige Chips für Massenprodukte herstellen lassen.

Vielleicht ist an Hagen Klauk ein Physiklehrer verloren gegangen. Auf jeden Fall kann er so gut erklären wie einer. Bei ihm erscheint der Elektronentransport durch Halbleiter plötzlich so klar und simpel wie ein Stromkreis mit Batterie und Birnchen. Klauk steht in einem weißen Overall mit Kapuze im staubfreien Reinraum. Die Lüftung surrt leise. „Ist ja klar, wenn die Moleküle im Halbleiter zu groß oder verdrillt sind, dann bleiben die Elektronen hängen und kommen kaum voran“, sagt er und dreht und beugt und streckt seine Arme. Dann steht er stramm. „Liegen die Moleküle aber fein säuberlich und eng nebeneinander, dann können die Elektronen regelrecht durchs Material sausen.“

Die Frage, wie man Elektronen auf Trab bringt, beschäftigt ihn schon seit mehr als zehn Jahren. Man könnte glauben, dass es Spannenderes gibt. Klauk aber kommt in Fahrt, wenn er von der Vision des aufrollbaren Flachbildschirms erzählt, der so dünn ist wie Overheadfolie und so bunt wie das Display eines Smartphones. „So ein Bildschirm, der ganz aus flexibler, dehnbarer Elektronik besteht, den man aufgerollt in die Tasche stecken kann; dazu versuchen wir unseren Teil beizutragen.“

Herkömmliche Displays bestehen aus Glas, auf das hauchdünn ein ungeordneter Film aus Silizium aufgedampft wird, der Elektronikwerkstoff schlechthin. Solche Displays lassen sich freilich nicht knicken. Nicht nur wegen des Glases. Auch das Silizium würde abplatzen und zerbröseln, wenn man es rollte oder faltete. Hagen Klauk interessiert sich deshalb für eine Materialklasse, die man erst seit Anfang der 1990er-Jahre so richtig ernst nimmt – Kunststoffe mit elektrischen Eigenschaften. Diese organische Elektronik besteht vor allem aus Kohlenstoff- und Wasserstoffmolekülen, den wichtigsten Ingredienzien von Kunststoffen eben. Noch aber kann es der biegsame und robuste Elektro-Kunststoff nicht mit dem Hochleistungssilizium aufnehmen – unter anderem, weil die Elektronen noch nicht schnell genug durch das Material flitzen.

Klauk und seine Kollegen haben sich auf Transistoren spezialisiert, die Kernkomponente aller elektronischen Bauteile und auch von Displays sind. Transistoren sind eine Art Stromventil. Sie regeln den Stromfluss in Mikroprozessoren oder in den winzigen Leuchtdioden von Flachbildschirmen. Klauk greift eine kleine Lupe vom Schreibtisch. „Hier, schauen Sie sich damit mal die Pixel auf meinem Smartphone an.“ Tatsächlich, das was man sonst unscharf als kleine Pünktchen auf dem Bildschirm erkennt, ist in der Vergrößerung ein perfekt geordnetes Nebeneinader von roten, grünen und blauen Strichen – winzig klein, nur Mikrometer groß. Jeder einzelne ist eine Leuchtdiode. Und jede Leuchtdiode wird von einem eigenen winzigen Transistor gesteuert. Fließt Strom, leuchtet die Diode, je nach Stromfluss heller oder dunkler. Ein großer Bildschirm bringt es auf Millionen von Transistoren. Und die bestehen bislang ausnahmslos aus aufgedampftem Silizium.

Vollständiger Text unter: www.mpg.de/4359908/organische_elektronik

Ansprechpartner
Dr. Hagen Klauk
Max-Planck-Institut für Festkörperforschung, Stuttgart
Telefon: +49 711 689-1401
Fax: +49 711 689-1472
E-Mail: H.Klauk@fkf.mpg.de
Prof. Dr. Klaus Müllen
Max-Planck-Institut für Polymerforschung, Mainz
Telefon: +49 6131 379-150
Fax: +49 6131 379-350
E-Mail: muellen@mpip-mainz.mpg.de

Tim Schröder | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de
http://www.mpg.de/4359908/organische_elektronik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Kobold in der Zange
17.01.2018 | Leibniz-Institut für Katalyse e. V. an der Universität Rostock

nachricht Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen
16.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik

17.01.2018 | Agrar- Forstwissenschaften

Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt

17.01.2018 | Physik Astronomie

Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

17.01.2018 | Physik Astronomie