Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Anstandsdame für den ‘Wächter des Genoms’

05.09.2011
Interaktion zwischen Tumorsuppressor-Protein und Chaperon aufgeklärt

Das Protein p53 spielt eine essentielle Rolle in der Krebsentstehung. Es verhindert, dass aus einer gesunden Zelle eine Krebszelle wird, indem es bei Schädigungen des Erbguts den kontrollierten Zelltod einleitet.


Strukturbild des Komplexes aus Hsp90. Jede Untereinheit ist dimer (jeweils in dunklerer
und hellerer Tönung angezeigt). Die Domänen des Hsp90 sind in grün (N-terminale Domäne),
dunkelrot (Mitteldomäne) und blau (C-terminale Domäne) und die von p53 in orange gezeigt. p53
bindet sowohl an die C-terminale Domäne (linkes Bild) als auch schwächer an die Mitteldomäne
(rechts) von Hsp90.

Das Hitzeschockprotein Hsp90 wiederum aktiviert und stabilisiertp53. Nun haben Wissenschaftler der Technischen Universität München (TUM) aufgeklärt, wo und mit welchen Mechanismen die beiden Proteine interagieren. Über ihre Ergebnisse berichten sie in der aktuellen Ausgabe der Zeitschrift Nature Structural and Molecular Biology.

In jeder Zelle gibt es Tausende von Proteinen, deren Aktivität und Lebensdauer reguliert werden müssen, um den Lebenszyklus der Zelle von der Zellteilung bis zum Zelltod zu steuern. Das Hitzeschockprotein Hsp90 spielt hierbei eine zentrale Rolle. Es ist ein sogenanntes „Chaperon“, eine Art „Anstandsdame“ oder „Qualitätskontrolleur“. Es prüft und steuert die Qualität und Aktivität einer Vielzahl wichtiger Signalproteine und hilft ihnen, die richtige Gestalt anzunehmen. Wenn die Zelle durch Hitze oder Sauerstoffmangel hohem Stress ausgesetzt ist, wird es vermehrt hergestellt, um eine Schädigung der Partnerproteine zu verhindern.

Eines der wichtigsten Partnerproteine von Hsp90 ist das Tumorsuppressor-Protein p53. Es verhindert an mehreren Stellen der Zelle die Krebsentstehung und wird daher auch als „Wächter des Genoms“ bezeichnet. Bei DNA Schäden sorgt p53 dafür, dass die Zelle sich nicht mehr teilt und aktiviert Reparaturmechanismen. Reichern sich zu viele Erbgutschäden an, leitet das Protein den kontrollierten „Selbstmord“ der Zelle ein. Ist p53 inaktiv, teilt die Zelle sich trotz Schäden weiter – ein Tumor entsteht. Bei mehr als der Hälfte aller Tumore ist das p53 Protein geschädigt oder inaktiviert, kann also die Kontrollfunktion nicht mehr ausüben.

Hsp90 wiederum bindet an p53 und hält es in einem funktionalen Zustand bis es seine eigentliche Funktion, nämlich die Bindung an bestimmte Elemente der DNA, erfüllen kann. Wie und wo die Bindung von p53 an Hsp90 dabei genau erfolgt, war bisher jedoch unklar und strukturell nicht charakterisiert.

Am Department Chemie der TU München gelang es nun einem Team von Biochemikern um Professor Horst Kessler, in Kooperation mit der Gruppe von Professor Johannes Buchner, Inhaber des Lehrstuhls für Biotechnologie, dieDetails der Bindung von p53 an Hsp90 aufzuklären. Horst Kessler war von 1989 bis 2008 Inhaber des Lehrstuhls für Organische Chemie und Biochemie der TUMünchen, und ist seit Oktober 2008 Carl-von-Linde-Professor am Institute for Advanced Study der TU München (TUM-IAS).

Mit Hilfe der kernmagnetischen Resonanzspektroskopie (NMR) konnten die Wissenschaftler am Bayerischen NMR-Zentrum in Garching zum ersten Mal die Interaktionsflächen zwischen Hsp90 und p53 charakterisieren und zeigen, dass p53 in einer bereits strukturierten Form an Hsp90 bindet. Dadurch wird p53 in einem funktionalen Zustand gehalten bis diese Interaktion durch seinen eigentlichen Bindungspartner DNA aufgelöst wird. Um p53 im richtigen Zustand zu halten, müssen dabei mehrere Interaktionsflächen an verschiedenen Stellen des Hsp90 Proteins in fein abgestimmter Weise zusammen wirken.

Bei der kernmagnetischen Resonanzspektroskopie wird eineProbe aus gelösten Proteinen in ein extrem starkes homogenes Magnetfeld gebracht und mit komplizierten Folgen von Radiofrequenzimpulsen bestrahlt. Die Atomkerne im Protein reagieren darauf mit einer charakteristischen Antwortfrequenz, die von der Umgebung des jeweiligen Kerns abhängt und von den Wissenschaftlerngemessen werden kann. „Jeder einzelne angeregte Kern zeigt dabei eine eigene Frequenz“, erklärt Kessler. „Auf diese Weise können wir feststellen in welcher Beziehung die einzelnen Kerne zueinander stehen und so auf die Struktur desProteins schließen.“ Bindet p53 an Hsp90 ändern sich die Antwortfrequenzen an bestimmten Stellen des Proteins. An Hand dieser Änderungen können die Wissenschaftler sehen, an welche Stellen von Hsp90 das p53 Protein bindet.

Die neuen Erkenntnisse über die Interaktionsflächen zwischen Hsp90 und p53 haben eine große Bedeutung für die Entwicklung neuer Krebsmedikamente. Denn Hsp90 stabilisiert nicht nur intaktes p53 sondern vor allem auch mutierte Versionen des Proteins. Dies führt zu einer negativen Wirkung des Chaperons. Der Grund: Das durch Hsp90 aufrecht erhaltene defekte p53 bindet seinerseits an aktives p53 und inaktiviert es – ein Tumor kann entstehen. Medikamente, die an den gefundenen Stellen angreifen, könnten in Zukunft verhindern, dass Hsp90 an defektes p53 in Krebszellen binden undstabilisieren kann. „Viele der in Tumoren veränderten p53 Varianten sind weniger stabil als intaktes p53 und benötigen daher Hsp90 umso mehr“, erklärt Franz Hagn, Erstautor der Studie. „Hemmt man diese Interaktion, wird vor allem das mutierte p53 entsorgt. Dadurch kann das intakte p53 seine Funktion nocherfüllen, geschädigte Zellen beseitigen und den Krebs verhindern.“

In ihrer Studie stellten Kessler, Buchner und ihr Team fest, dass p53 nicht nur wie bislang vermutet an die mittlere Domäne von Hsp90, sondern ebenfalls mit hoher Affinität an einen Bereich der C-terminalen Domäne des Proteins bindet. Verantwortlich für die Stabilität dieser Bindung sind dabei an beiden Bindungsstellen von Hsp90 negativ geladene Aminosäuren. „Diese Stellen ähneln der DNA, deren Phosphatrückrat ebenfalls negativ geladen ist“, erklärt Kessler. „Hsp90 ahmt also den eigentlichen Partner von p53 nach. So wird der Komplex aus beiden Proteinen zusammen gehalten.“ Dabei bleibt p53 in seinem Ursprungszustand erhalten und kann weiterhin an DNA binden.

Die Arbeitwurde unterstützt durch das TUM Institute for Advanced Study, die DeutscheForschungsgemeinschaft (SFB 594), den Exzellenzcluster Center for Integrated Protein Science Munich (CIPSM), das Elitenetzwerk Bayern, den Fonds der Chemischen Industrie sowie der European Molecular Biology Organization.

Originalpublikation:
Structural analysis of the interaction between Hsp90 and the tumor suppressor protein p53
Franz Hagn, Stephan Lagleder, Marco Retzlaff, Julia Rohrberg, Oliver Demmer, Klaus Richter, Johannes Buchner and Horst Kessler
Nature Structural & Molecular Biology, DOI: 10.1038/nsmb.2114
Kontakt:

Prof. Dr. Horst Kessler
Institute for Advanced Study und
Department Chemie
Technische Universität München
Lichtenbergstraße 4, 85748 Garching, Germany
Tel.: +49 89 289 13300
Fax: +49 89 289 13210
E-Mail: Horst.Kessler@tum.de
Prof. Dr. Johannes Buchner
Department Chemie
Technische Universität München
Lichtenbergstraße 4
D-85748 Garching
Tel.: +49 89 289 13341
Fax: +49 89 289 13345
E-Mail: Johannes.Buchner@tum.de

Prof. Dr. Horst Kessler | TU München
Weitere Informationen:
http://www.org.chemie.tu-muenchen.de/
http://www.chemie.tu-muenchen.de/biotech/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten