Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Am Anfang der Kaskade

19.08.2016

G-Proteine sind molekulare Schalter an der Innenwand der Zelle, die wichtige Signale ins Zellinnere weiter leiten. Die mit ihnen verbundenen Rezeptoren sind Ziel eines Großteils aller Medikamente. Nun konnten Wissenschaftler der Technischen Universität München (TUM) erstmals nachvollziehen, wie sich die einzelnen Aminosäuren im G-Protein während des Schaltprozesses genau bewegen. Die entdeckten Mechanismen geben Hinweise für das Design neuer Wirkstoffe.

Der menschliche Körper ähnelt einem großen Teamprojekt. Millionen von Zellen, strukturiert in Geweben und Organen, übernehmen unterschiedlichste Aufgaben, arbeiten sich zu, koordinieren und regulieren sich gegenseitig. Damit diese intensive Zusammenarbeit funktioniert, müssen die Zellen Informationen miteinander austauschen. Bestimmte Proteine regulieren diese Kommunikation. Als "Boten" leiten sie von außen ankommende Signale ins Zellinnere weiter.


Prof. Franz Hagn Prof. Franz Hagn mit einer Kernspinresonanzspektroskopie-Probe am Supraleitenden Magneten mit 950 MHz Feldstärke.

Foto: Uli Benz / TUM

Ein Bote und sein Rezeptor im Fokus der Pharmaindustrie

Eine wichtige Klasse solcher Botenproteine sind die sogenannten G-Proteine. Sie fungieren als kleine molekulare Schalter: Bindet ein Signalstoff an den G-Protein gekoppelten Rezeptor, wird ein Teil des G-Proteins, die sogenannte Alpha-Untereinheit, "eingeschaltet". Sie löst sich vom Rezeptor und den anderen Untereinheiten ab und aktiviert weitere Proteine.

Es ist der erste Schritt einer Signalkaskade, an deren Ende die gewünschte Reaktion steht. Bei einer ganzen Reihe von Krankheiten ist die Regulation dieser Signalkaskade gestört. Daher greifen über 30 Prozent aller hergestellten Medikamente an den mit den G-Proteinen gekoppelten Rezeptoren an, darunter Betablocker, Medikamente gegen Bluthochdruck und Psychopharmaka. Auch Wirkstoffe, die direkt auf die G-Proteine wirken, sind denkbar.

Mehr als nur eine Momentaufnahme – wie genau wird der Schalter betätigt?

Nun haben Wissenschaftler um Franz Hagn, Professor für Strukturelle Membranbiochemie der TU München herausgefunden, was genau in der Alpha-Untereinheit beim "Umlegen" des Schalters vor sich geht.

Mit Hilfe der Kernmagnetischen-Resonanzspektroskopie klärten sie Schritt für Schritt auf, wie sich die einzelnen Aminosäuren in der Alpha-Untereinheit bei der Aktivierung bewegen. "Herstellern von Medikamenten könnte dieses Wissen helfen Wirkstoffe zu kreieren, die auf genau die einzelnen Schritte zugeschnitten sind, was bis dato sehr schwierig ist", erläutert Franz Hagn.

Erstmals G-Proteine in natürlichem Zustand untersucht

In ihrer Arbeit gelang es den Forschern um Hagn zum ersten Mal, die Bewegungen in der Alpha-Untereinheit des G-Proteins in ihrer natürlichen Umgebung, also an die Zellmembran gebunden, zu betrachten. Dies ist sehr schwierig, da Membranproteine nicht löslich sind, dies aber für die spektroskopische Untersuchung notwendig ist.

Um das G-Protein dennoch erforschen zu können, entwickelten die Wissenschaftler kleine Lipid-Doppelmembran-Stücke, bei denen Lipid-bindende Proteine die wasserabweisenden Kanten abschirmen. In diese sogenannten Phospholipid-Nanodisks setzten sie dann den G-Protein gekoppelten Rezeptor ein und untersuchten die Interaktion mit dem löslichen G-Protein.

Die Wissenschaftler fanden heraus, dass die Rezeptor-gebundene Form der Alpha-Untereinheit, in der Stellung "Aus" sehr offen vorliegt. Bindet das aktivierende Guanosintriphosphat (GTP) an das Protein, klappt es zu und der Schalter wird aktiv. Nun liegen die Teile der Untereinheit fest aneinander gelagert vor. Der Komplex ist starr und kaum mehr veränderlich, was für die Aktivierung weiterer Signalproteine essenziell ist.

Voraussetzungen für künftiges Wirkstoffdesign

Noch liegt die Entwicklung eines direkt an G-Proteinen angreifenden Medikaments in weiter Ferne. Jedoch geben die neuen Erkenntnisse den Hinweis, dass die offene Form geeigneter für den Angriff durch Wirkstoffe sein könnte als die starre, geschlossene Form des Proteins.

In kommenden Arbeiten wollen die Wissenschaftler um Professor Hagn auch den Einfluss des G-Protein-gekoppelten Rezeptors auf die Struktur des G-proteins untersuchen sowie die Rolle der anderen Untereinheiten des G-Proteins beim Schaltprozess erforschen. Entscheidend für diese Arbeiten ist dabei die exzellente Ausstattung des Bayerischen NMR-Zentrums, welche in den nächsten zwei Jahren auf dem Garchinger Campus der TU München um ein weiteres Hochfeld-Spektrometer erweitert wird.

Die Forschungen fanden in enger Zusammenarbeit mit dem Institut für Strukturbiologie des Helmholtz-Zentrums München, dem Department für Biochemie der Universität Zürich sowie dem Department für Biologische Chemie und Molekulare Pharmakologie der Harvard Medical School in Boston statt. Für die theoretischen Berechnungen wurde der Supercomputer des Leibniz-Rechenzentrums der Bayerischen Akademie der Wissenschaften genutzt.

Die Arbeiten wurden unterstützt durch das Institute for Advanced Study der Technischen Universität München (TUM-IAS) aus Mitteln der Exzellenzinitiative und der Europäischen Gemeinschaft, dem Exzellenzcluter Center für Integrated Protein Science Munich (CIPSM), Mitteln des internationalen Human Frontier Science Program und der National Institutes of Health (USA).

Originalpublikation:

David Goricanec, Ralf Stehle, Pascal Egloff, Simina Grigoriu, Andreas Plückthun, Gerhard Wagner and Franz Hagn, "Conformational dynamics of a G-Protein α subunit is tightly regulated by nucleotide binding", Proceedings of the National Academy of Sciences (PNAS), vol. 113 no. 26, 2016 – DOI: 10.1073/pnas.1604125113

Bild zum Download: https://mediatum.ub.tum.de/?id=1324471#1324471

Weitere Infos:

Prof. Franz Hagn wurde als Tenure Track Assistant Professor von der Harvard Medical School in Boston, USA an die TUM berufen. Mehr zum TUM Faculty Tenure Track, dem deutschlandweit einmaligen Berufungs- und Karrieresystem: www.tum.de/tenure-track/

Kontakt:

Technische Universtität München
Prof. Dr. Franz Hagn
Tel.: +49 89 289 10683
E-Mail: franz.hagn@tum.de
Web: www.membrane.ch.tum.de

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/33325/

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie