Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Am Anfang der Kaskade

19.08.2016

G-Proteine sind molekulare Schalter an der Innenwand der Zelle, die wichtige Signale ins Zellinnere weiter leiten. Die mit ihnen verbundenen Rezeptoren sind Ziel eines Großteils aller Medikamente. Nun konnten Wissenschaftler der Technischen Universität München (TUM) erstmals nachvollziehen, wie sich die einzelnen Aminosäuren im G-Protein während des Schaltprozesses genau bewegen. Die entdeckten Mechanismen geben Hinweise für das Design neuer Wirkstoffe.

Der menschliche Körper ähnelt einem großen Teamprojekt. Millionen von Zellen, strukturiert in Geweben und Organen, übernehmen unterschiedlichste Aufgaben, arbeiten sich zu, koordinieren und regulieren sich gegenseitig. Damit diese intensive Zusammenarbeit funktioniert, müssen die Zellen Informationen miteinander austauschen. Bestimmte Proteine regulieren diese Kommunikation. Als "Boten" leiten sie von außen ankommende Signale ins Zellinnere weiter.


Prof. Franz Hagn Prof. Franz Hagn mit einer Kernspinresonanzspektroskopie-Probe am Supraleitenden Magneten mit 950 MHz Feldstärke.

Foto: Uli Benz / TUM

Ein Bote und sein Rezeptor im Fokus der Pharmaindustrie

Eine wichtige Klasse solcher Botenproteine sind die sogenannten G-Proteine. Sie fungieren als kleine molekulare Schalter: Bindet ein Signalstoff an den G-Protein gekoppelten Rezeptor, wird ein Teil des G-Proteins, die sogenannte Alpha-Untereinheit, "eingeschaltet". Sie löst sich vom Rezeptor und den anderen Untereinheiten ab und aktiviert weitere Proteine.

Es ist der erste Schritt einer Signalkaskade, an deren Ende die gewünschte Reaktion steht. Bei einer ganzen Reihe von Krankheiten ist die Regulation dieser Signalkaskade gestört. Daher greifen über 30 Prozent aller hergestellten Medikamente an den mit den G-Proteinen gekoppelten Rezeptoren an, darunter Betablocker, Medikamente gegen Bluthochdruck und Psychopharmaka. Auch Wirkstoffe, die direkt auf die G-Proteine wirken, sind denkbar.

Mehr als nur eine Momentaufnahme – wie genau wird der Schalter betätigt?

Nun haben Wissenschaftler um Franz Hagn, Professor für Strukturelle Membranbiochemie der TU München herausgefunden, was genau in der Alpha-Untereinheit beim "Umlegen" des Schalters vor sich geht.

Mit Hilfe der Kernmagnetischen-Resonanzspektroskopie klärten sie Schritt für Schritt auf, wie sich die einzelnen Aminosäuren in der Alpha-Untereinheit bei der Aktivierung bewegen. "Herstellern von Medikamenten könnte dieses Wissen helfen Wirkstoffe zu kreieren, die auf genau die einzelnen Schritte zugeschnitten sind, was bis dato sehr schwierig ist", erläutert Franz Hagn.

Erstmals G-Proteine in natürlichem Zustand untersucht

In ihrer Arbeit gelang es den Forschern um Hagn zum ersten Mal, die Bewegungen in der Alpha-Untereinheit des G-Proteins in ihrer natürlichen Umgebung, also an die Zellmembran gebunden, zu betrachten. Dies ist sehr schwierig, da Membranproteine nicht löslich sind, dies aber für die spektroskopische Untersuchung notwendig ist.

Um das G-Protein dennoch erforschen zu können, entwickelten die Wissenschaftler kleine Lipid-Doppelmembran-Stücke, bei denen Lipid-bindende Proteine die wasserabweisenden Kanten abschirmen. In diese sogenannten Phospholipid-Nanodisks setzten sie dann den G-Protein gekoppelten Rezeptor ein und untersuchten die Interaktion mit dem löslichen G-Protein.

Die Wissenschaftler fanden heraus, dass die Rezeptor-gebundene Form der Alpha-Untereinheit, in der Stellung "Aus" sehr offen vorliegt. Bindet das aktivierende Guanosintriphosphat (GTP) an das Protein, klappt es zu und der Schalter wird aktiv. Nun liegen die Teile der Untereinheit fest aneinander gelagert vor. Der Komplex ist starr und kaum mehr veränderlich, was für die Aktivierung weiterer Signalproteine essenziell ist.

Voraussetzungen für künftiges Wirkstoffdesign

Noch liegt die Entwicklung eines direkt an G-Proteinen angreifenden Medikaments in weiter Ferne. Jedoch geben die neuen Erkenntnisse den Hinweis, dass die offene Form geeigneter für den Angriff durch Wirkstoffe sein könnte als die starre, geschlossene Form des Proteins.

In kommenden Arbeiten wollen die Wissenschaftler um Professor Hagn auch den Einfluss des G-Protein-gekoppelten Rezeptors auf die Struktur des G-proteins untersuchen sowie die Rolle der anderen Untereinheiten des G-Proteins beim Schaltprozess erforschen. Entscheidend für diese Arbeiten ist dabei die exzellente Ausstattung des Bayerischen NMR-Zentrums, welche in den nächsten zwei Jahren auf dem Garchinger Campus der TU München um ein weiteres Hochfeld-Spektrometer erweitert wird.

Die Forschungen fanden in enger Zusammenarbeit mit dem Institut für Strukturbiologie des Helmholtz-Zentrums München, dem Department für Biochemie der Universität Zürich sowie dem Department für Biologische Chemie und Molekulare Pharmakologie der Harvard Medical School in Boston statt. Für die theoretischen Berechnungen wurde der Supercomputer des Leibniz-Rechenzentrums der Bayerischen Akademie der Wissenschaften genutzt.

Die Arbeiten wurden unterstützt durch das Institute for Advanced Study der Technischen Universität München (TUM-IAS) aus Mitteln der Exzellenzinitiative und der Europäischen Gemeinschaft, dem Exzellenzcluter Center für Integrated Protein Science Munich (CIPSM), Mitteln des internationalen Human Frontier Science Program und der National Institutes of Health (USA).

Originalpublikation:

David Goricanec, Ralf Stehle, Pascal Egloff, Simina Grigoriu, Andreas Plückthun, Gerhard Wagner and Franz Hagn, "Conformational dynamics of a G-Protein α subunit is tightly regulated by nucleotide binding", Proceedings of the National Academy of Sciences (PNAS), vol. 113 no. 26, 2016 – DOI: 10.1073/pnas.1604125113

Bild zum Download: https://mediatum.ub.tum.de/?id=1324471#1324471

Weitere Infos:

Prof. Franz Hagn wurde als Tenure Track Assistant Professor von der Harvard Medical School in Boston, USA an die TUM berufen. Mehr zum TUM Faculty Tenure Track, dem deutschlandweit einmaligen Berufungs- und Karrieresystem: www.tum.de/tenure-track/

Kontakt:

Technische Universtität München
Prof. Dr. Franz Hagn
Tel.: +49 89 289 10683
E-Mail: franz.hagn@tum.de
Web: www.membrane.ch.tum.de

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/33325/

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie