Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Alternde Schwebteilchen erleichtern Klimaprognosen

11.12.2009
Organische Aerosole aus unterschiedlichen Quellen beeinflussen das Klima auf ähnliche Weise - sie fördern vermutlich die Entstehung von Wolken

Viele Ursachen, eine Wirkung - nach diesem Prinzip beeinflussen organische Schwebteilchen in der Atmosphäre vermutlich das Klima. Solche Schwebteilchen, Aerosole genannt, spielen bei der Bildung von Wolken und Niederschlag eine große, bislang aber nicht völlig geklärte Rolle. Doch organische Aerosole nehmen sehr ähnliche Eigenschaften an, wenn sie eine Weile in der Luft verweilen und dabei chemisch altern - egal ob es sich um organische Stoffe handelt, die Pflanzen, Dieselmotoren oder Industrieanlagen freisetzen. Das hat ein internationales Forscherteam, darunter auch Wissenschaftler des Max-Planck-Instituts für Chemie und der Johannes-Gutenberg-Universität Mainz, nun festgestellt. Die Forscher schließen daraus, dass die Aerosole auch auf ähnliche Weise ins Klima eingreifen. Das macht es leichter, ihren Beitrag in Klimamodellen zu berücksichtigen. Bislang gingen Klimaforscher davon aus, dass die Wirkung der Aerosole von ihrer Quelle und ihren chemischen Veränderungen in der Atmosphäre abhängt. (Science, 11. Dezember 2009)


Messstation im Abendlicht: Am Taunus-Observatorium der Goethe-Universität Frankfurt untersuchen die Forscher des Max-Planck-Instituts für Chemie, wie die Nähe eines Ballungsgebietes die Luft verändert. Hier analysieren sie mit einem Massenspektrometer auch die organischen Komponenten von Aerosolen. Bild: Johannes Schneider / MPI für Chemie

Neue Erkenntnisse machen Klimaforschern das Leben nicht immer leichter - im Gegenteil: Meist stellt sich mit jedem neuen Detail heraus, dass das Klima komplizierter ist als angenommen. Von daher haben die Wissenschaftler von fast dreißig Forschungseinrichtungen weltweit jetzt einen besonderen Grund zur Freude. Ihre Erkenntnisse vereinfachen die Lage nämlich ausnahmsweise. Die Forscher haben organische Aerosole von ganz unterschiedlichen Quellen analysiert. Dabei haben sie beobachtet, dass sich die Partikel anders als bislang angenommen in mancher Hinsicht ähneln. Vor allem in den Eigenschaften, die ihren Einfluss auf die Wolkenbildung und somit auf das Klima bestimmen. Und der könnte die Erderwärmung bremsen, weil die organischen Aerosole vermutlich die Bildung von Wolken fördern.

Das Forscherteam hat an 30 Messstationen in der nördlichen Hemisphäre die Zusammensetzung der Aerosole analysiert. Wissenschaftler des Max-Planck-Instituts für Chemie und der Johannes-Gutenberg-Universität Mainz steuerten dazu Analysen aus ihrer Heimatstadt und aus dem Taunus bei. Dort wie auch an allen anderen Untersuchungsorten fanden die Forscher in den Partikeln zwar unterschiedlich hohe Anteile an verschiedenen anorganischen Substanzen wie Sulfaten und Nitraten und organischen Stoffen. "Wir waren aber überrascht, wie sehr sich die organischen Bestandteile der Aerosole ähnelten, egal ob sie aus dem Zentrum von Mexiko City, einer Insel Japans, dem finnischen Wald oder den Schweizer Alpen stammten", sagt Jose-Luis Jimenez, Wissenschaftler an der Universität von Colorado in Boulder und Leiter des internationalen Teams.

Organische Stoffe machen je nach Messort 20 bis 90 Prozent aller Aerosole aus, die kleiner als ein Mikrometer sind. Die Schwebteilchen - nicht nur organische Partikel, sondern auch Ruß und anorganische Sulfat- oder Nitratteilchen - tragen zum einen zur Luftverschmutzung bei und verursachen vor allem in smog-geplagten Städten Erkrankungen der Atemwege. Zum anderen beeinflussen sie das Klima, weil sie Sonnenlicht reflektieren oder aufnehmen, und die Atmosphäre so kühlen beziehungsweise aufheizen. Zudem dienen sie als Kondensationskeime für Wolken- und Regentröpfchen. Wolken wiederum reflektieren Sonnenlicht und bremsen so die Erderwärmung. Bislang gingen Atmosphärenforscher davon aus, dass organische Substanzen in Aerosolen die Wolkenbildung nicht fördern. Doch das stimmt nicht, wie die neuen Ergebnisse zeigen.

In den Feldmessungen und Laborversuchen untersuchte das Team die organischen Komponenten eingehender. Demnach verwischen chemische Reaktionen in der Atmosphäre die Unterschiede, die zunächst zwischen den freigesetzten organischen Stoffen bestehen. "Den Einfluss der organischen Aerosole auf das Klima zu kalkulieren wird daher leichter", sagt Stephan Borrmann, Professor für experimentelle Meteorologie an der Johannes-Gutenberg-Universität Mainz und Direktor am Max-Planck-Institut für Chemie: "Auch wenn sie ursprünglich aus unterschiedlichen Quellen stammen, haben am Ende wahrscheinlich alle einen sehr ähnlichen Effekt."

Und dieser Effekt dürfte klimafreundlicher sein als bislang angenommen. Denn wie die Forscher herausgefunden haben, entstehen dabei vor allem Stoffe, an denen Wolkentröpfchen besser kondensieren als an den Ausgangsstoffen. "Die organischen Aerosole tragen also womöglich mehr zur Wolkenbildung bei als wir bislang dachten", sagt Johannes Schneider, der am Max-Planck-Institut für Chemie an der Untersuchung mitgearbeitet hat.

Die organischen Substanzen, die zunächst in die Atmosphäre gelangen, sind so unterschiedlich wie ihre Quellen: Dieselfahrzeuge stoßen Reste von Treibstoff aus, Bäume setzen gasförmige Terpene frei, und aus Industrieanlagen entweicht noch eine Menge anderer Substanzen. Je länger sich diese Stoffe in der Atmosphäre befinden, desto stärker werden sie oxidiert. Dabei entstehen zwar je nach Ausgangsstoff andere Substanzen, in allen Reaktionsprodukten der Atmosphärenchemie steigt allerdings der Sauerstoffgehalt. Das führt dazu, dass die Verbindungen sich bevorzugt an vorhandenen Teilchen anlagern oder sogar neue Teilchen bilden. Dabei vermischen sie sich auch mit anorganischen Stoffen.

Am Ende kommen so Partikel heraus, die sich zumindest in ihren physikalischen Eigenschaften sehr ähneln. Und die sind für die Klimawirkung entscheidend - zum Beispiel für die Wolkenbildung: Die Forscher haben untersucht, wie gut die Partikel Wasser aufnehmen - je mehr Wasser sie aufsaugen, desto effektiver sollten sie als Kondensationskeime für Wolken und Regentropfen wirken. Maßgeblich dafür ist demnach ihr Sauerstoffgehalt, also wie stark sie bereits oxidiert wurden.

Dass die Partikel, die im Labor mehr Wasser aufnehmen, in der Atmosphäre tatsächlich auch zur Wolkenbildung beitragen, wollen die Forscher am Mainzer Max-Planck-Institut in weiteren Untersuchungen beweisen. "Wir wollen mit einem Forschungsflugzeug Wolkentröpfchen sammeln und analysieren, ob wir darin Aerosole mit einem hohen Anteil chemisch gealterter organischer Substanzen finden", sagt Johannes Schneider: "Erst dann wissen wir, ob diese die Wirkung haben, von der wir jetzt ausgehen."

[PH]

Originalveröffentlichung:

J. L. Jimenez et al.
Evolution of Organic Aerosols in the Atmosphere
Science, 11. Dezember 2009
Weitere Informationen erhalten Sie von:
Dr. Johannes Schneider
Max-Planck-Institut für Chemie, Mainz
Tel.: +49 6131 305-586
E-Mail: johannes.schneider@mpic.de
Prof. Dr. Stephan Borrmann
Prof. Dr. Stephan Borrmann, Johannes Gutenberg-Universität Mainz
Tel.: +49 6131 3922861
E-Mail: borrmann@uni-mainz.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics