Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Afrikanischer Fisch soll Herzkranken helfen

15.04.2009
Vielleicht steht dem afrikanischen Elefantenrüsselfisch eine große Karriere in der Medizin bevor. Das zigarrengroße Tier kann dank Elektrosensoren in pechschwarzer Nacht "sehen".

Wissenschaftler der Universität Bonn und des Forschungszentrums Jülich wollen diese Fähigkeit nun kopieren. Ihr Fernziel ist ein "elektrisches Auge", das auch trübe Flüssigkeiten wie Blut problemlos durchdringen kann.

Damit ließen sich dann beispielsweise Ablagerungen in Arterien genauer untersuchen. Die Forscher stellen auf der Hannover-Messe vom 20. bis zum 24. April einen ersten sehr einfachen Prototypen eines derartigen Elektrosensors vor. Das ist nur eines von vier Projekten, die Bonner Bioniker zeigen werden.

Das geplante "elektrische Auge" könnte beispielsweise eingesetzt werden, um gefährliche instabile Plaques zu erkennen. Das sind Ablagerungen in Arterien, die unverhofft platzen können. Folge kann zum Beispiel ein Herzinfarkt sein. Mediziner sind daher daran interessiert, instabile Plaques rechtzeitig zu identifizieren. Dabei könnte ein Blick auf die im Elefantenrüsselfisch "verbaute" Technik helfen.

Vom gezeigten Prototypen bis zum fertigen Elektro-Auge ist es aber noch ein weiter Weg: So benötigt man viele Einzelsensoren, um ein detailliertes Bild zu erhalten - ähnlich wie auf dem Aufnahmesensor einer Digitalkamera zahlreiche lichtempfindliche Pixel sitzen. Zudem muss das fertige Elektro-Auge so miniaturisiert werden, dass es sich über einen Katheter in "verkalkte" Blutgefäße schieben lässt. Dennoch halten die Forscher um den Bonner Zoologen Professor Dr. Gerhard von der Emde sowie Professor Dr. Andreas Offenhäusser und Dr. Herbert Bousack vom Forschungszentrum Jülich diesen Ansatz für viel versprechend.

High Speed-Wärmefühler nach Insektenvorbild

Die Universität Bonn ist noch mit weiteren Bionik-Projekten auf der Hannover Messe vertreten. So hat ein Team von Wissenschaftlern unter Bonner Beteiligung den einzigartigen Feuersensor des Kiefernprachtkäfers kopiert. Dieser basiert auf einem für die Infrarotsensorik sehr ungewöhnlichen Funktionsprinzip: Der Käfer scheint Feuer gewissermaßen zu "hören". Dank dieses Mechanismus' reagiert der Wärmefühler etwa fünfmal schneller als technische Infrarotsensoren.

Die Infrarotsensoren des Feuerkäfers bestehen aus einem winzigen runden Behälter, in den die druckempfindliche Spitze einer mechanischen Sinneszelle eingebettet ist. Dieser Zylinder ist nur ein Drittel so dick wie ein Menschenhaar. Darin befinden sich einige hundertmilliardstel Milliliter Wasser. Bei Bestrahlung mit Infrarotlicht der passenden Wellenlänge erwärmt sich die Flüssigkeit. Sie dehnt sich dadurch sehr schnell aus, wodurch sich der Druck im Zylinder erhöht. Dadurch verformt sich die Spitze der Sinneszelle - und das schon wenige Tausendstel Sekunden nach dem Infrarot-Signal. Das Ganze funktioniert hydraulisch und damit fast verzögerungsfrei, ähnlich wie im Auto, wenn der Fahrer aufs Bremspedal steigt. An dem Projekt sind die Universität Bonn, die Forschungszentren Jülich und caesar, die Technischen Universität Dresden sowie die Firma DIAS Infrared Systems aus Dresden beteiligt. Die Forscher stellen auf der Hannover Messe das Sensor-Prinzip vor, das den Käfersinn fürs Brenzlige kopiert.

Von Schlangen lernen

Noch relativ am Anfang stehen dagegen zwei andere Projekte unter Bonner Beteiligung. In dem einen geht es um eine besondere Fähigkeit von Speikobras, Schützenfischen oder auch Pistolenkrebsen: Sie verschießen zielgenau Flüssigkeiten, um beispielsweise Feinde zu verscheuchen oder Beute zu erlegen. Den beteiligten Biologen und Ingenieuren geht es um die unterschiedlichen Wege, wie die Tiere diese Flüssigkeitsstrahlen erzeugen. Sie hoffen, dass ihre Erkenntnisse zu einer Verbesserung technischer Prozesse wie Schneiden oder Reinigen betragen. Und auch in anderer Hinsicht kann die Forschung den Schlangen etwas abgucken: Dank der besonderen Beschaffenheit ihrer Haut können sich die Reptilien ohne Beine fortbewegen, und das hoch effektiv. Verantwortlich dafür sind die charakteristischen Reibungseigenschaften des Schlangenkörpers, die Ingenieure nun mit Unterstützung der Uni Bonn auch technisch umsetzen wollen.

Kontakt:
Elektrosensor:
Professor Dr. Gerhard von der Emde
Gemeinschaftsstand Innovationsland der NRW-Hochschulen, Halle 2, Stand C38
Telefon: 0228/73-5555
E-Mail: vonderemde@uni-bonn.de
Feuersensor:
Prof. Dr. Helmut Schmitz
Gemeinschaftsstand Innovationsland der NRW-Hochschulen, Halle 2, Stand C38
Telefon: 0228/73-2071
E-Mail: h.schmitz@uni-bonn.de
Speikobra:
Ruben Berthé
Stand der Wissenschaftsregion Bonn, Halle 2, Stand D39
Telefon: 0228/73-5488
E-Mail: r.a.berthe@uni-bonn.de
Schlangenhaut:
Tobias Kohl
Bionik-Stand, Halle 2, Stand D46
Telefon: 0228/73-5476
E-Mail: t.kohl@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Einblicke in die Welt der Trypanosomen
16.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht Geographie verrät das Alter von Viren
16.08.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie