Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Abwehr von Fraßschädlingen bei Farnen

21.11.2012
Anders als Blütenpflanzen senden Adlerfarne keine Duftsignale aus, um die Feinde ihrer Fraßschädlinge zu ihren Gunsten anzulocken.

Zweihundert Millionen Jahre lang beherrschten sie die Erde, und noch heute sind sie weltweit sehr artenreich verbreitet: Moose, Schachtelhalme und Farne. Max-Planck-Wissenschaftler haben nun herausgefunden, dass bei Schädlingsbefall Adlerfarne (Pteridium aquilinum) im Gegensatz zu den heute vorherrschenden und evolutionär jüngeren Blütenpflanzen keine Duftstoffe aussenden.


Eine Raupe der Farnblattwespe (Strongylogaster multifasciata) frisst an einem Blatt des Adlerfarns. Wie andere Pflanzen besitzen Farne Giftstoffe und weitere Abwehrmechanismen, um sich erfolgreich gegen ihre Fraßfeinde zu wehren. Im Gegensatz zu Blütenpflanzen geben Adlerfarne nach Raupenbefall aber keine Duftstoffe ab, um zum Beispiel Parasiten wie Schlupfwespen oder Raubwanzen, die die Raupe attackieren, anzulocken.

Foto: MPI Chem. Ökol./Venkatesan Radhika

Eine solche Duftstoffemission dient unter anderem dazu, die Feinde ihrer Schädlinge, wie beispielsweise Schlupfwespen oder Raubwanzen anzulocken, die dann deren Fraßfeinde parasitieren. Trotzdem konnte auch in Farnwedeln eine Duftstoffabgabe hervorgerufen werden, wenn diese mit Jasmonsäure behandelt wurden, die als Hormon in Blütenpflanzen die Duftstoffsynthese auslösen kann. Dies lässt darauf schließen, dass die Pflanze zwar prinzipiell diese Form der Abwehr mobilisieren könnte, sie jedoch nicht zur Verteidigung gegen Fraßfeinde einsetzt.

Nur wenige Schädlinge befallen Farne

Farne sind sogenannte Gefäßsporenpflanzen, weil sie im Gegensatz zu den heute vorherrschenden Pflanzen keine Blüten und Samen bilden, sondern ihre Fortpflanzung noch „ursprünglich“ über Sporenbildung erfolgt. Was aber ihre Stoffwechselleistungen und vor allem ihre Abwehr gegen Schädlinge betrifft, scheinen sie gleichauf mit den Blütenpflanzen zu liegen: Farne kommen bis heute zahlreich auf der Erde vor, obwohl sie entwicklungsbiologisch älter als 400 Millionen Jahre sind.

Botaniker halten den Adlerfarn Pteridium aquilinum sogar für eine der am weitesten verbreiteten Pflanzenspezies. Er besiedelt verschiedenste Habitate. Auffallend ist, dass Adlerfarne im Vergleich zu samenbildenden Pflanzen nur wenig von Fraßfeinden heimgesucht werden. Ein Grund dafür könnte sein, dass die Farnwedel besonders effektive Giftstoffe enthalten, mit denen sie ihre Schädlinge in Schach halten: Nachgewiesen wurden unter anderem Indanone, zyanogene Glykoside und Tannine. Aber wehren sich diese „lebenden Fossilien“ auch indirekt gegen ihre Feinde, so wie es viele andere Pflanzen tun?

Das Arsenal für indirekte Verteidigung ist in Adlerfarnen vorhanden − wird aber bei Befall nicht mobilisiert.

Von Bohnen, Mais, Baumwolle, Pappeln, Tabak und Kartoffeln und weiteren Samenpflanzen ist bekannt, dass sie nach Raupenbefall in ihren Blättern das Pflanzenhormon Jasmonsäure produzieren, das dann zur Bildung von Duftstoffen beispielsweise aus der Familie der Terpenoide führt. Diese Maßnahme dient unter anderem dazu, die Feinde der Raupen anzulocken.

Venkatesan Radhika, Doktorandin in der Abteilung Bioorganische Chemie des Instituts, wollte nun herausfinden, ob auch Adlerfarne diese Lockstoffe abgeben, wenn sie von Fraßfeinden befallen werden. Sie verwendete zwei Raupenarten: einen Spezialisten, der nur wenige ausgewählte Arten, unter anderem Adlerfarne, befällt (Strongylogaster multifasciata), und einen Generalisten, der so gut wie alles gern vertilgt (Spodoptera littoralis). Außerdem setzte sie einen Roboter ein, MecWorm, der in regelmäßigen Abständen mit einem Metallbolzen abgegrenzte Bereiche eines Farnwedels verletzen und so mechanisch eine Raupenattacke imitieren kann. (siehe Pressemeldung vom 01.03.2005 „MecWorm: Künstliche Raupe "kaut" täuschend echt“). Ergebnis: Die Wedel geben, wenn überhaupt, nur sehr geringe Mengen an Duftstoffen ab. Und auch das Signalmolekül Jasmonsäure war in den Wedeln nur in sehr geringen Mengen nachweisbar.

Wurden Farnwedel jedoch direkt mit Jasmonsäure behandelt, reagierten sie vergleichbar mit Blättern von Blütenpflanzen − sie gaben ein typisches Bouquet an Duftstoffen ab. Die Wissenschaftler untersuchten diesen Effekt genauer und fanden, dass auch nach Gabe die Vorläufermoleküle zur Synthese von Jasmonsäure OPDA und Linolensäure ebenso Duftstoffe im Farnblattgewebe gebildet werden konnten. Biochemische Experimente zeigten, dass diese Duftstoffe in den Farnwedeln über dieselben Stoffwechselwege produziert werden wie in Blütenpflanzen. „Wahrscheinlich erreicht in unseren Experimenten die nach Raupenfraß ausgelöste Anhäufung von Jasmonsäure nicht den Schwellenwert, der für das Auslösen der Duftstoffbildung nötig ist“, so Wilhelm Boland, Direktor der Abteilung.

Brauchen Farne vielleicht gar keine indirekte Verteidigung mittels Duftstoffabgabe? Reichen die verschiedenen aggressiven Gifte, die in Farnwedeln vorhanden sind, zur Abwehr von Fraßfeinden aus? „Hier können wir nur spekulieren“, so Boland. „Die Strategie der indirekten Verteidigung könnte ihren evolutionären Ursprung einerseits in ehemals noch direkten Verteidigungsmaßnahmen, so etwa beim gebänderten Saumfarn (Pteris vittata L.), andererseits aber auch erst im Zuge des Anlockens von Bestäubern durch Duftstoffe größere Bedeutung gewonnen haben, also einem Merkmal, das naturgemäß erst die blütenbildenden Samenpflanzen und nicht die blütenlosen Farne besitzen“, so der Wissenschaftler weiter. Faszinierend bleibt, dass scheinbar auch ohne indirekte Verteidigung Adlerfarne unsere Erde bis heute erfolgreich besiedeln können. [JWK]

Originalveröffentlichung:
Venkatesan Radhika, Christian Kost, Gustavo Bonaventure, Anja David, Wilhelm Boland (2012). Volatile emission in bracken fern is induced by jasmonates but not by Spodoptera littoralis or Strongylogaster multifasciata herbivory. PLOS ONE, 20. November 2012; doi:10.1371/journal.pone.0048050

http://dx.doi.org/10.1371/journal.pone.0048050

Weitere Informationen:
Prof. Dr. Wilhelm Boland, MPI chemische Ökologie, boland@ice.mpg.de,
+49 (0)3641 571201

Bildmaterial:
Angela Overmeyer M.A., +49 3641 57-2110, overmeyer@ice.mpg.de oder via http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Weitere Informationen:
http://www.ice.mpg.de
http://dx.doi.org/10.1371/journal.pone.0048050

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Im Mikrokosmos wird es bunt: 124 Farben dank RGB-Technologie
22.06.2017 | Max-Planck-Institut für Biochemie

nachricht CO2-neutraler Wasserstoff aus Biomasse
22.06.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

Die Zukunft der Informationstechnologie - Internationale Konferenz erstmals in Aachen

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

22.06.2017 | Geowissenschaften

Wie Protonen durch eine Brennstoffzelle wandern

22.06.2017 | Energie und Elektrotechnik

Tröpfchen für Tröpfchen

22.06.2017 | Biowissenschaften Chemie