Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

50 neue genetische Ursachen für geistige Behinderung entdeckt

22.09.2011
Genetische Defekte, bei denen nur ein Gen betroffen ist, führen zu geistigen Behinderungen und verwandten Störungen

Seit mehr als 15 Jahren konzentriert sich die Genomforschung auf die Suche nach häufigen genetischen Risikofaktoren von Volkskrankheiten wie Diabetes, Bluthochdruck, Schizophrenie und Krebs, weitgehend ohne Erfolg.

Eine der Ursachen dafür ist, dass sich hinter diesen Krankheitsbildern viele verschiedene genetische Störungen verbergen können, und nicht selten handelt es sich dabei um Defekte einzelner Gene. Die meisten dieser Gendefekte sind jedoch noch nicht aufgeklärt. Forschern des Max-Planck-Instituts für molekulare Genetik in Berlin und ihren Kollegen aus dem Iran ist es jetzt gelungen, 50 bisher unbekannte genetische Ursachen für geistige Behinderung zu identifizieren. Es gibt gute Gründe für die Annahme, dass mehrere dieser neuen Gendefekte auch für verwandte Störungen wie Autismus, Schizophrenie oder Epilepsie verantwortlich sind.

Bis heute sind annähernd 7000 ‚monogene’ Krankheiten bekannt, und für etwa die Hälfte ist der betreffende Gendefekt bereits identifiziert. Sie finden sich bei etwa 17 Prozent aller Kinder, die in Krankenhäuser eingewiesen werden. Ihr Anteil an den Gesamtkosten der Krankenversorgung liegt noch deutlich höher. Viele monogene Krankheiten sind jedoch noch unbekannt. Sie werden oft nicht diagnostiziert, weil es sich um Fälle ohne erkennbare familiäre Häufung oder um Patienten mit vermeintlich komplexen Volkskrankheiten handelt.

Ein internationales Konsortium unter maßgeblicher Beteiligung des Max-Planck-Instituts für molekulare Genetik hat jetzt 50 bisher unbekannte genetische Ursachen für geistige Behinderung bei Kindern entdeckt. Diese Störung tritt nur auf, wenn die – in der Regel gesunden – Eltern eine Anlage für einen bestimmten Gendefekt tragen und wenn beide eine mutierte Kopie desselben Gens an ihre Kinder vererben. Über solche ‚rezessiven’ Gendefekte ist bisher besonders wenig bekannt, denn für ihre Aufklärung benötigten die Wissenschaftler Familien mit mehreren Betroffenen – also möglichst Großfamilien.

In Deutschland und anderen westlichen Ländern sind solche Familien selten, jedoch nicht in Bevölkerungen des Nahen und Mittleren Ostens. Zudem sind viele Eltern in diesen Ländern verwandt, was die Ursache dafür sein könnte, daß dort geistige Behinderung etwa drei Mal häufiger ist als bei uns. Daher arbeiteten die Max-Planck-Forscher eng mit einem Forschungszentrum im Iran zusammen. Wir alle tragen Gendefekte in uns. Doch für Blutsverwandte ist das Risiko viel größer, dass es sich dabei um dieselben Gendefekte handelt“, sagt Hilger Ropers. Kranke Kinder blutsverwandter Eltern tragen zwei identische Kopien des verantwortlichen Gendefekts, aber auch die umgebenden Chromosomenabschnitte sind völlig gleich. Das erleichterte es den Forschern, das defekte Gen zu finden.

Seit Beginn der Kooperation 2003 wurden mehr als tausend überwiegend iranische Familien mit behinderten Kindern für Untersuchungen herangezogen. Bei 136 dieser Familien konnten die Forscher den Defekt im Genom hinreichend genau lokalisieren und bei 78 mithilfe neuer Sequenziertechniken identifizieren.

Neben Mutationen in 22 schon bekannten Krankheitsgenen fand das deutsch-iranische Forscherteam auffällige Veränderungen in 50 weiteren Genen. Abgesehen von wenigen Ausnahmen ließen sich diese Gene bekannten regulatorischen Signalwegen zuordnen. Viele Produkte der auffällig veränderten Gene interagieren direkt mit anderen Eiweißen in diesen Netzwerken, die von bereits bekannten Genen für geistige Behinderung kodiert werden. „Das ist ein direkter Hinweis darauf, dass die von uns gefundenen Gene tatsächlich für die Behinderung verantwortlich sind“, so Ropers.

Überraschenderweise ist ein Großteil dieser Gene und Genprodukte nicht ausschließlich im menschlichen Gehirn aktiv, sondern auch in anderen Organen. Die Forscher vermuten, dass dies mit einer besonderen Anfälligkeit des Gehirns für Störungen des zellulären Stoffwechsels und anderer grundlegender zellulärer Funktionen zusammenhängen könnte, die auf die enorme Komplexität des zentralen Nervensystems zurückgeht. Den endgültigen Beweis dafür, dass die gefundenen Genmutationen die Hirnfunktion beeinflussen, sollen laufende Untersuchungen an Tiermodellen liefern.

Diese in der englischen Zeitschrift Nature online publizierten Untersuchungen belegen die enorme genetische Vielfalt geistiger Behinderungen und unterteilen sie in unterschiedliche monogene Defekte, die in den meisten Fällen auf einzelne Familien beschränkt sind. „Unsere Erkenntnisse werden dazu beitragen, die oft jahrelange Suche betroffener Familien nach einer belastbaren Diagnose entscheidend zu verkürzen und ihnen neue Möglichkeiten für die Familienplanung eröffnen“, sagt Hilger Ropers.

Überdies sind diese Untersuchungen ein Modell für die Aufklärung verwandter Störungen wie Autismus, Schizophrenie und Epilepsie, aber auch für viele andere komplexe Krankheiten mit genetischem Hintergrund, bei denen genomweite Assoziationsstudien weitgehend erfolglos geblieben sind. Es gibt Hinweise darauf, dass solche Störungen und geistige Behinderung häufig verwandt sind. So leiden ungefähr 30 Prozent aller Menschen mit geistiger Behinderung auch an Epilepsie, und sogar 70 bis 80 Prozent aller Autisten sind auch geistig behindert. Die Ergebnisse dieser Untersuchungen sind daher auch für die Aufklärung dieser komplexen Krankheiten von großer Bedeutung.

Ansprechpartner
Prof. Dr. H.-Hilger Ropers
Max-Planck-Institut für molekulare Genetik, Berlin
Telefon: +49 30 8413-1240
Fax: +49 30 8413-1383
E-Mail: ropers@molgen.mpg.de
Dr. Patricia Marquardt
Max-Planck-Institut für molekulare Genetik, Berlin
Telefon: +49 30 8413-1716
Fax: +49 30 8413-1671
E-Mail: patricia.marquardt@molgen.mpg.de
Originalveröffentlichung
Hossein Najmabadi, Hao Hu, Masoud Garshasbi, Tomasz Zemojtel, Seyedeh Sedigheh Abedini, Wei Chen, Masoumeh Hosseini, Farkhondeh Behjati, Stefan Haas, Payman Jamali, Agnes Zecha, Marzieh Mohseni, Lucia Püttmann, Leyla Nouri Vahid, Corinna Jensen, Lia Abbasi Moheb, Melanie Bienek, Farzaneh Larti, Ines Mueller, Robert Weissmann, Hossein Darvish, Klaus Wrogemann, Valeh Hadavi, Bettina Lipkowitz, Sahar Esmaeeli-Nieh, Dagmar Wieczorek, Roxana Kariminejad, Saghar Ghasemi Firouzabadi, Monika Cohen, Zohreh Fattahi, Imma Rost, Faezeh Mojahedi, Christoph Hertzberg, Atefeh Dehghan, Anna Rajab, Mohammad Javad Soltani Banavandi, Julia Hoffer, Masoumeh Falah, Luciana Musante, Vera Kalscheuer, Reinhard Ullmann, Andreas Walter Kuss, Andreas Tzschach, Kimia Kahrizi, H. Hilger Ropers
Deep sequencing reveals 50 novel genes for recessive cognitive disorders has been scheduled

Nature, 22. September 2011

Prof. Dr. H.-Hilger Ropers | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4424340/monogene_defekte

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forscher vergleichen Biodiversitätstrends mit dem Aktienmarkt
06.12.2016 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nährstoffhaushalt einer neuentdeckten “Todeszone” im Indischen Ozean auf der Kippe

06.12.2016 | Geowissenschaften

Entschlüsselung von Kommunikationswegen zwischen Tumor- und Immunzellen beim Eierstockkrebs

06.12.2016 | Medizin Gesundheit

Bioabbaubare Polymer-Beschichtung für Implantate

06.12.2016 | Materialwissenschaften