Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3D-Bilder lebender Tiere: Innovative Technologie durchbricht Grenzen moderner Licht-Mikroskopie

01.07.2009
Mit einer Kombination aus Licht und Ultraschall können Forscher der Technischen Universität München und des Helmholtz Zentrums München fluoreszierende Proteine mehrere Zentimeter tief in lebendem Gewebe sichtbar machen.

Bisher scheitern auch moderne Techniken an der starken Lichtstreuung jenseits von einem Millimeter Gewebedicke. In der Zeitschrift Nature Photonics beschreiben die Münchener Wissenschaftler jetzt, wie sie "Licht hören" und damit feststellen können, welche Gene in Geweben von Fliegenlarven und Fischen aktiv sind. Zukünftig könnte die Technologie die Untersuchung von Tumoren oder Herzkranzgefäßen im Menschen erleichtern.

Dass Gewebe lichtdurchlässig ist, weiß jedes Kind - denn wer hätte sich nicht einmal im Dunkeln mit der Taschenlampe in den Mund geleuchtet und sich vor dem roten Glimmen der Wangen gegruselt. Seit der Erfindung des Mikroskops nutzen Wissenschaftler Licht, um in Dünnschnitten von Gewebe festzustellen, ob es krankhaft verändert ist oder um die Funktionen von Zellen zu untersuchen. Die Grenze für solche Untersuchungen liegt allerdings bei einem halben bis einem Millimeter Gewebedicke - in dickeren Schichten wird das heraustretende Licht so diffus, dass sich keine Details mehr erkennen lassen.

Wissenschaftler um Vasilis Ntziachristos, Professor für biologische Bildgebung an der Technischen Universität München und Direktor des Instituts für biologische und medizinische Bildgebung des Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, haben diese Grenze jetzt durchbrochen und dreidimensionale Bilder eines sechs Millimeter dicken, erwachsenen Zebrafischs erzeugt.

Dazu machen sie Licht hörbar: Sie bestrahlen den Fisch von verschiedenen Seiten mit Laserblitzen, die im Inneren des Fischkörpers auf Fluoreszenzfarbstoffe treffen - die Farbmoleküle wurden dem Fisch gentechnisch angezüchtet. Wenn die Fluoreszenzfarbstoffe unter den Laserbitzen aufleuchten, erwärmt sich ihre Umgebung, die sich ein wenig ausdehnt. Weil dies extrem schnell geschieht, entsteht eine Druckwelle. Ein kurzer Laserimpuls erzeugt so eine Art Ultraschall-Echo, das die Forscher mit einem Ultraschall-Mikrophon einfangen.

Der eigentliche Trick allerdings sind speziell entwickelte mathematische Formeln. Mit denen rechnet ein angeschlossener Computer das Schallwellenmuster, das durch Schuppen, Muskeln, Rippen, Gräten und Einweide des Fischs in unterschiedlicher Weise verzerrt wird, in ein dreidimensionales Bild um.

Das Ergebnis der "Multi-spektralen opto-akustischen Tomographie", kurz MSOT, ist ein Bild mit einer beachtlichen Auflösung von 40 Mikrometern (vier Hunderstel Millimeter). Und: Der für Untersuchung betäubte Fisch erholt sich nach der Prozedur wieder vollständig.

Dr. Daniel Razansky, Laborleiter am Institut für Biologische Bildgebung, ist begeistert: "Das eröffnet der Forschung eine neue Dimension: Erstmals können Biologen die Entwicklung von Organen, Zellfunktionen und Aktivitäten von Genen durch mehrere Millimeter Gewebe hindurch verfolgen."

Bislang war es nötig, Tiere in verschiedenen Entwicklungsstadien zu töten und Gewebe-Dünnschnitte miteinander zu vergleichen, um Entwicklungen von Organen oder das Fortschreiten von Krankheiten verfolgen zu können. Die riesige Vielfalt bereits erhältlicher Fluorochromfarbstoffe - unter ihnen das 2008 mit dem Nobelpreis ausgezeichnete Green Fluorescent Protein und zahlreiche, für den klinischen Gebrauch zugelassene Farbstoffe - wird die Untersuchung von biologischer Prozesse in einer Vielzahl lebender Organismen möglich machen - vom Fisch bis hin zu Maus und Mensch. Auch die pharmazeutische Forschung könnte so deutlich beschleunigt werden, wenn die molekularen Effekte neuer Krebswirkstoffe über längere Zeit in einem Tier verfolgt würden.

Bio-Ingenieur Ntziachristos ist überzeugt: "MSOT bietet ein enormes Potenzial für die biomedizinische Forschung, die Entwicklung von Medikamenten und die medizinische Versorgung. Weil MSOT die Bildgebung in Gewebetiefen von mehreren Millimetern bis Zentimetern erlaubt, kann diese Technologie sich zum Standard für viele Arten der Bildgebung molekularer Prozesse in Geweben entwickeln."

Originalliteratur:
Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo
Daniel Razansky, Martin Distel, Claudio Vinegoni, Rui Ma, Norbert Perrimon, Reinhard W. Köster & Vasilis Ntziachristos

Nature Photonics, online veröffentlicht am 21. Juni 2009; doi:10.1038/nphoton.2009.98

Kontakt:
Dr. Daniel Razansky
Leiter des Labors für experimentelle biologische Bildgebung, Technischen Universität München
Stellvertretender Direktor des Instituts für biologische und medizinische Bildgebung, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt
Tel. 089-3187 1587
dr@tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://portal.mytum.de/welcome
http://mediatum2.ub.tum.de/?cfold=796963&dir=796963&id=796963

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblick ins geschlossene Enzym

26.06.2017 | Biowissenschaften Chemie

Laser – World of Photonics: Offene und flexible Montageplattform für optische Systeme

26.06.2017 | Messenachrichten

Biophotonische Innovationen auf der LASER World of PHOTONICS 2017

26.06.2017 | Messenachrichten