Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlüsseltechnologie für die nächste E-Fahrzeug-Generation: Antriebsstränge simulieren und prüfen

19.11.2015

Auch wenn man es den meisten derzeit auf dem Markt befindlichen Modellen nicht ansieht: Elektrofahrzeuge unterscheiden sich deutlich von Fahrzeugen mit Verbrennungsmotoren. Nicht nur die Art der Antriebsmaschine ist anders, sie haben typischerweise auch kompaktere Getriebe, und ihr Antriebsstrang zeigt generell veränderte Trägheits- und Steifigkeitsverhältnisse. Folglich ändert sich auch ihr Schwingverhalten. Da der Markt für Elektrofahrzeuge noch sehr jung ist, verfügt man in der Entwicklung bislang über wenige Erfahrungen zu diesem Thema.

Entscheidend für die erfolgreiche Entwicklung dieser Systeme sind passende Simulationsmodelle und Prototypentests. Im Rahmen des BMBF-geförderten Forschungsprojektes „e-Generation“ entwickelte das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF Methoden und Werkzeuge für die Simulation und die experimentelle Prüfung von elektrischen Antriebssträngen, um das Schwingverhalten und die resultierenden Betriebslasten zu untersuchen.


Mehrkörpersimulationsmodell eines elektrischen Antriebsstrangs.

Grafik: Fraunhofer LBF


Schematische Darstellung der Simulation und Prüfung elektrischer Antriebsstränge.

Grafik: Fraunhofer LBF.

Hauptziel des Projektes „e-Generation“ war, die Reichweite von E-Fahrzeugen durch niedrigeren Energieverbrauch zu erhöhen, die Fertigungskosten zu senken und eine hohe Produktqualität für die Alltagstauglichkeit zu realisieren.

Das Fraunhofer LBF hat dabei im Wesentlichen unterschiedlich detaillierte dynamische Simulationsmodelle in Form von 1D- beziehungsweise 3D-Mehrkörpersimulationsmodellen für ein ausgewähltes Antriebsstrangkonzept aufgebaut und validiert sowie die entsprechenden Simulationen mit dem Blick auf Betriebsfestigkeit und Systemzuverlässigkeit vorgenommen.

In der ersten Phase des Projekts lag der Fokus des Fraunhofer LBF auf einfachen Konzeptmodellen, die den Hauptfreiheitsgrad der Rotation des Antriebsstrangs berücksichtigten. Diese dynamischen 1D Modelle stellen die Torsionskette vom Motor zu den Rädern und die Fahrzeugdynamik in Längsrichtung dar. Dabei wurden die für die Schwingungen im niedrigen Frequenzbereich wesentlichen Elemente, wie die Reifen und die Seitenwelle, als flexible Komponenten simuliert.

Parallel zur Entwicklung der Antriebsstränge erhöhten die LBF-Wissenschaftler die Komplexität und den Detaillierungsgrad der Modellierung, um zusätzliche Effekte mit aufzunehmen. Mit den letztlich entwickelten Mehrkörpersimulationsmodellen konnten neben dem Drehfreiheitsgrad auch Anregungen anderer Freiheitsgrade betrachtet werden.

Damit wurde es möglich, das Modell auch mit den Beschleunigungen aus der Fahrdynamik (zusätzlich zu den Antriebmomenten) anzuregen, die Schwingungen des kompletten Systems gegen die Karosserie zu betrachten und die Lasten an den Antriebsstranglagern zu ermitteln. Systemschwingungen und Lasten ließen sich auf diese Weise mit höherer Genauigkeit ermitteln.

Mit den Antriebsstrangprototypen führten die LBF-Wissenschaftler eine experimentelle Charakterisierung am Prüfstand durch. Dafür wurden die Prototypen mit einem auf realen Manövern basierenden Prüfprotokoll getestet und verschiedene mechanische und elektrische Messsignale aufgenommen.

Um das reale Verhalten des Fahrzeugs zu berücksichtigen, bauten die Wissenschaftler eine Hardware-in-the-Loop Testumgebung auf, in der reale dynamische Reaktionen am Rad eingeleitet wurden. Dazu leiteten sie gemessene Radgeschwindigkeitsprofile direkt (open-Loop) ein oder sie simulierten die Fahrzeuglongitudinaldynamik (inkl. Räder und Reifen) in Echtzeit.

Durch die unter anderem im Projekt „e-Generation“ gesammelten Erfahrungen kann das Fraunhofer LBF Hersteller in allen Phasen des Entwicklungsprozesses, von konzeptionellen und reduzierten 1D Torsions-Modellen des Antriebsstrangs bis zu vollständigen 3D-Mehrkörpermodellen, begleiten. Darüber hinaus können auch die Prüfungs- und Verifizierungsphasen entweder mit Open-Loop-oder Hardware-in-the-Loop-Tests unter realen Bedingungen getestet werden.

Anke Zeidler-Finsel | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF
Weitere Informationen:
http://www.lbf.fraunhofer.de

Weitere Nachrichten aus der Kategorie Automotive:

nachricht Informatiker der Saar-Uni verhindern Auto-Fernsteuerung durch Hacker
03.11.2016 | Universität des Saarlandes

nachricht Gewichtseinsparung durch lasergestützte Materialbearbeitung im Automobilbau
07.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie