Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entwickeln ein weltweit einzigartiges, „selbst-bewusstes“ Auto

17.07.2013
Optisch erinnert das neue Fahrzeug der Technischen Universität Braunschweig an ein Spielzeugauto in der Größe eines „erwachsenen“ Fahrzeugs.

Statt der Karosserie findet sich hier nur ein Gitterrohrrahmen. An ihm sind die einzelnen Komponenten angebracht. In dem Auto, das von vier Elektromotoren getrieben fast lautlos über den Asphalt schnurrt, steckt ein Kraftprotz: Fast 600 PS bringt das zwei Tonnen schwere Gefährt auf die Straße.


Torben Stolte, wissenschaftlicher Mitarbeiter am Institut für Regelungstechnik, am Steuer des MOBILE-Forschungsfahrzeugs. TU Braunschweig, frei zur Veröffentlichung bei Abdruck der Quelle.

Es ist eines der leistungsstärksten E-Fahrzeuge der Welt, und beschleunigt in drei bis vier Sekunden von null auf hundert. Entwickelt wurde es von Prof. Markus Maurer und seinem Team am Niedersächsischen Forschungszentrum Fahrzeugtechnik der TU Braunschweig.

Alle vier Räder sind mit einem jeweils eigenen Antrieb und einer Lenkeinheit versehen, die separat angesteuert werden können. Das Auto kann also jedes Rad unabhängig von den anderen bewegen, wodurch es sich praktisch auf der Stelle drehen und extrem leicht einparken lässt.

Von den „Machern“ von Leonie

Die „Macher“ von Leonie, des ersten Autos, das seit dem Jahr 2010 fahrerlos durch den Braunschweiger Straßenverkehr kurvt, haben sich mit dem MOBILE-Projekt diesmal ein neues Ziel gesteckt. „Leonie war damals aufsehenerregend, aber im Grunde die Weiterentwicklung konventioneller Fahrzeugtechnik – eine Evolution“, sagt Maurer. „MOBILE ist dagegen eine echte Revolution. Sie werden davon weltweit kein Zweites finden“. „Diesmal haben wir alles verworfen, was wir bisher über Autos wussten, und einfach von Anfang an ein ganz neues gebaut“, ergänzt Projektleiter Peter Bergmiller.

Die Wissenschaftler vom Institut für Regelungstechnik der TU Braunschweig haben mit Prof. Thomas Vietor, Institut für Konstruktionstechnik, schnell einen Partner gefunden, der das Konzept für den Rohrrahmen entwickelt hat. Der maßgeschneiderte Rahmen bot den Forschern größtmögliche Flexibilität. Außer den drei Wissenschaftlern haben fast ausschließlich Studierende das Auto entwickelt. Jede Komponente ist das Ergebnis einer Bachelor-, Master oder Diplomarbeit, insgesamt etwa 40 Arbeiten aus der Elektrotechnik, der Informations-Sytemtechnik, der Informatik, dem Wirtschaftsingenieurwesen und dem Maschinenbau.

Zahlreiche der einzelnen Komponenten wurden zuerst in Simulation am Rechner vorentwickelt und dann auf ein kleines eins zu fünf Modellfahrzeug portiert und dort erprobt. „Die Studierenden sind mit dem Modellauto dann in die Turnhalle gezogen, um ihre Entwicklungen auszuprobieren“, erklärt Bergmiller. Eine Hundeleine diente hier als Sicherung, um Crashs zu vermeiden. Die jungen Autobauer mussten deshalb immer zu zweit sein, einer steuert das Auto, der andere läuft hinter dem Auto her und hält es an der Leine fest. Die Kosten von 310.000 Euro haben die Braunschweiger aus Institutsmitteln und Sachspenden bestritten. Es gibt keine vertragliche Bindung an Industriepartner. Gleichwohl seien Unternehmen sehr an einzelnen Komponenten interessiert. Für die beteiligten Studierenden ist das Projekt daher auch hinsichtlich ihrer späteren Karriere interessant. „Über unsere Absolventen funktioniert bei uns der größte Teil des Wissenstransfers“, erläutert Maurer stolz.

Zu stark für die Straße

„Leider hat unser Auto keine Straßenzulassung, und auch auf unserem Testgelände können wir es nicht voll ausfahren“, sagt Bergmiller. Die Frage, warum Ingenieure überhaupt so ein Auto bauen, beantwortet Markus Maurer. Man habe sich von den Forschungspartnern wie Chris Gerdes an der Universität Stanford inspirieren lassen: „Einfach, weil man daraus etwas lernen kann.“ Tatsächlich enthält das Fahrzeugkonzept grundlegende Elemente für die Autos der Zukunft. Kernstück der Forschung ist das vollkommen neue Sicherheitskonzept. Da die Autos immer autonomer fahren und aus immer mehr Elektronik bestehen, wird dies bald existenziell wichtig sein. Die Sicherheitskonzepte der autonomen Autos der Zukunft müssen von selbst funktionieren. Denn es wird keine Menschen geben, die im Zweifelsfall wieder übernehmen. „Wir haben das stärkste mögliche E-Fahrzeug gebaut. Denn wenn wir dies im Griff haben, können wir auch mit schwächeren Fahrzeugen umgehen“, erlärt Maurer.

Auto mit „Selbst-Bewusstsein“

Bisherige Autos haben eine mechanische oder hydraulische Kopplung von Lenkrad und Bremse mit den Rädern. Der Fahrer bewegt das Auto, zwar verschiedentlich unterstützt, somit immer noch selbst. Das Lenkrad von Autos der Zukunft bewegt dagegen eine Achse, die im Leeren endet. Ihre Bewegung wird von Sensoren aufgenommen und an die relevanten Komponenten übertragen. Ähnliches gilt auch für Gaspedal und Bremsen. „Wenn Sie ein solches Auto also lenken oder bremsen, ist das im Grunde nichts mehr als eine Wunschäußerung. Sie könnten das auch mit einem Joystick machen – es käme aufs Selbe heraus“, lacht Peter Bergmiller. Die Sicherheit in diesem Auto hängt also erheblich mehr vom Funktionieren der Elektronik ab.

Konventionelle Lösungen setzen dabei auf klassische Redundanz der Systeme: Für den Fall, dass in einem E-Fahrzeug während der Fahrt ein Lenkmotor ausfällt, gibt es beispielsweise einen zweiten Lenkantrieb, der die Aufgaben übernimmt. Das MOBILE-Projekt dagegen nutzt die Tatsache, dass insgesamt vier Antriebe und Lenkmotoren für die Räder vorhanden sind, und verbindet diese mit einem intelligenten Konzept. Fällt ein Antrieb aus, würde dadurch normalerweise ein Rad an beliebiger Stelle stehen bleiben. Indem die verbleibenden Antriebe sich die Aufgabe teilen, kann das Auto zumindest zur nächsten Werkstatt oder in die heimische Garage gefahren werden.

Aber ein MOBILE-Wagen muss noch mehr können. Tatsächlich muss es mehr über seine eigenen Fähigkeiten „wissen“ als seine Nutzer. Je nach Fahrsituation müssen die vorhandenen Antriebe zielgerichtet eingesetzt werden. Dabei trifft das Fahrzeug die Entscheidungen und nicht der Fahrer. Etwa dürfen bei schneller Fahrt die Hinterräder nur wenig und anders als bei langsamer Fahrt bewegt werden, da das gesamte Auto sonst ins Schleudern geraten könnte. Die Fahrzeugelektronik muss Position und Geschwindigkeit sowie das entstehende Risiko bei jeder Aktion einschätzen können und entsprechende Entscheidungen treffen.

Während unser Forschungsfahrzeug Leonie Straße und Umgebung, Verkehrsregeln und -signale, sowie Verkehrsteilnehmer berechnen konnte, um autonom im Straßenverkehr zu agieren, zielt das MOBILE-Projekt auf Autonomie nach innen, erläutert Maurer. Es „verstehe“ das Zusammenspiel der elektronischen und mechanischen Komponenten, Kraft und Risiko sowie die im Umgang mit der komplexen Elektronik relativ eingeschränkten Möglichkeiten des Nutzers. Ziel sei es, beide Forschungsansätze zusammenzuführen.

Intelligent, emissionsarm, flexibel

Das Mobile-Projekt ist Teil der Forschungsarbeit am Niedersächsischen Forschungszentrum Fahrzeugtechnik der TU Braunschweig, welches sich auf vier Forschungsfelder konzentriert:

- "Das Intelligente Fahrzeug"
- "Das Emissionsarme Fahrzeug"
- "Flexible Fahrzeugkonzepte und Fahrzeugproduktion"
- "Mobilitätsmanagement"
Das Niedersächsische Forschungszentrum Fahrzeugtechnik der TU Braunschweig
Als interdisziplinäres Zentrum wurde das NFF 2007 als Einrichtung der TU Braunschweig mit Unterstützung der Niedersächsischen Landesregierung und der Volkswagen AG gegründet, um die Forschungsregion Braunschweig als Spitzenstandort in der Fahrzeugtechnik mit internationalem Rang zu etablieren. Es entstand damit eine effektive Kooperationsplattform für die gemeinsame Forschung von Industrie und Wissenschaft, die Anfang 2009 einen weiteren Impuls durch die Eröffnung des Standortes Wolfsburg im MobileLifeCampus erhielt. Drei der insgesamt 17 Mitgliedsinstitute des NFF sind hier angesiedelt. Als weiterer Standort ist der Neubau des Forschungsflughafens Braunschweig geplant.

Die Forschungsprogrammatik des NFF basiert auf der Vision des Metropolitan Car. Es fokussiert die Entwicklung zukünftiger fahrzeugbezogener Technologien und Nutzungsmodelle für die nachhaltige Sicherstellung der individuellen Mobilitätsbedürfnisse in Ballungsräumen.

Kontakt:

Prof. Dr.-Ing. Markus Maurer
Technische Universität Braunschweig
Institut für Regelungstechnik
Hans-Sommer-Str. 66
38106 Braunschweig
Tel.: +49 (0) 531 - 391 3838
E-Mail: maurer@ifr.ing.tu-bs.de
Dipl.-Ing. Peter Bergmiller
Tel.: +49 (0) 531 - 391 7879
E-Mail: bergmiller@ifr.ing.tu-bs.de
Weitere Informationen:
http://www.ifr.ing.tu-bs.de/de/institut/
http://www.youtube.com/playlist?list=PLmfy-N8s1k-lYrVb1YnyZ8L-qOaXxJPnq - Videomaterial vom Aufbau des Fahrzeugs und den ersten Testfahrten

Dr. Elisabeth Hoffmann | idw
Weitere Informationen:
http://www.ifr.ing.tu-bs.de/de/institut/
http://www.youtube.com/playlist?list=PLmfy-N8s1k-lYrVb1YnyZ8L-qOaXxJPnq

Weitere Nachrichten aus der Kategorie Automotive:

nachricht Leuchtende Mikropartikel unter Extrembedingungen
28.02.2017 | Otto-von-Guericke-Universität Magdeburg

nachricht IHP-Forschungsteam verbessert Zuverlässigkeit beim automatisierten Fahren
22.02.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie