Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Autonome Fahrzeuge für sicheren Personennahverkehr - Worüber reden intelligente Autos?

29.01.2009
Fahrzeuge werden immer intelligenter. Die ersten Anwendungen für autonomes, dass heißt selbstständiges Fahren, sind bereits am Markt erhältlich. So ist denkbar, dass Passagiere bald von Fahrzeugen ganz ohne menschlichen Fahrer befördert werden.

Im Rahmen des Projekts Cybercars-2 entwickelt das Institut für Parallele und Verteilte Systeme der Universität Stuttgart gemeinsam mit Partnern und Forschungseinrichtungen aus dem In- und Ausland derartige autonome Fahrzeuge und testet sie. Die Stuttgarter Wissenschaftler untersuchen, wie ganze Scharen von solchen Fahrzeugen zusammenarbeiten könnten, um einen sicheren und komfortablen Personentransport zu gewährleisten.


Intelligente Cybercars an einer realen Kreuzung.
Bild: INRIA


In einer Simulation.
Bild: Universität Stuttgart

Ein wichtiger Aspekt dabei ist die Kooperation zwischen den Fahrzeugen. Diese sollen nicht stur an vorgefertigten Fahrplänen festhalten, sondern ihre Wege selbst planen dürfen. Dabei spielt die Absprache untereinander eine große Rolle. Jedes Fahrzeug kann jederzeit mit jedem anderen Kontakt aufnehmen, Verkehrsinformationen austauschen oder Bitten und Anfragen stellen. Welches Fahrzeug zum Beispiel an einer Kreuzung zuerst fahren darf, wird nicht mehr von starren Regeln bestimmt, sondern wird während der Fahrt zwischen den Fahrzeugen verhandelt. So erhält beispielsweise ein Fahrzeug freie Fahrt über alle Kreuzungen, um damit eine Verspätung auszugleichen. Die Forscher entwickeln im Projekt Cybercars-2 nicht nur Kommunikationssysteme, sondern auch Verhandlungsmuster und Entscheidungsprotokolle. Denn gerade bei vielen Fahrzeugen in großen Verkehrsnetzen können schnell Konflikte, Staus und Blockaden entstehen.

Im Rahmen des Projekts Cybercars-2 bauten die Wissenschaftler zehn echte autonome Fahrzeuge in fünf unterschiedlichen Typen und setzten sie erfolgreich innerhalb eines Demonstrationssystems ein. Für die Zukunft sind auch sehr viel größere Systeme denkbar. Allerdings ist nicht jede Fahrstrategie, die mit zehn Fahrzeugen funktioniert, auch für hundert oder tausend Autos geeignet. Die Gruppe Bild verstehen am Institut für Parallele und Verteilte Systeme der Universität Stuttgart hat deshalb einen speziellen Simulator für die Cybercars-Fahrzeuge entwickelt, in dem beliebig große Verkehrssysteme mit beliebig vielen Fahrzeugen simuliert werden können. Damit ist es möglich, auch komplexe Verkehrssituationen mit zahlreichen miteinander kommunizierenden Fahrzeugen zu untersuchen. Nur wenn eine Fahrstrategie sich auch unter diesen schwierigen Bedingungen bewährt, ist sie auch für den sicheren Betrieb der realen Fahrzeuge geeignet.

Weitere Informationen zum Projekt, den beteiligten Partnern und den erzielten Ergebnissen unter http://www.cybercars.org

Ansprechpartner:
Prof. Paul Levi,
Institut für Parallele und Verteilte Systeme,
Tel. 0711/7816387,
e-mail: paul.levi@ipvs.uni-stuttgart.de

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de/presse/mediendienst/6/
http://www.cybercars.org

Weitere Nachrichten aus der Kategorie Automotive:

nachricht Leuchtende Mikropartikel unter Extrembedingungen
28.02.2017 | Otto-von-Guericke-Universität Magdeburg

nachricht IHP-Forschungsteam verbessert Zuverlässigkeit beim automatisierten Fahren
22.02.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie