Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aluminium statt Kupfer als Leitungsmaterial im Auto-Bordnetz

07.02.2011
In Fahrzeugen aller Art spielen Elektrik und Elektronik eine stetig wachsende Rolle. Als Leitungsmaterial wird derzeit in der Regel Kupfer verwendet. Doch im Vergleich zu Aluminium ist Kupfer schwer und teuer.

Vor allem für vollelektrische Fahrzeuge wäre der Umstieg auf das billigere und spezifisch leichtere Aluminium eine interessante Option. Deshalb steht jetzt auch die Optimierung des verzweigten Elektrobordnetzes im Fokus der Ingenieure. In Zusammenarbeit mit Forschern bei BMW haben Wissenschaftler der Technischen Universität München (TUM) nun herausgefunden, mit welchen Tricks es möglich ist, Kupfer durch Aluminium zu ersetzen.

Auf den ersten Blick ist es nicht nachvollziehbar, warum in modernen Kraftfahrzeugen mit (teil-) elektrischem Antrieb nach wie vor auf das Leitermaterial Kupfer gesetzt wird – obwohl Aluminium leichter und vor allem wesentlich kostengünstiger ist. Doch will man in der Elektrik Kupfer durch Aluminium ersetzen, muss man sich zunächst einigen technologischen Herausforderungen stellen. Vor allem bei höheren Temperaturen, wie sie auch im Auto an vielen Stellen auftreten, zeigt Aluminium ein deutliches Kriechen. Konventionelle Verbinder sind daher nicht einsetzbar, sie wären nicht dauerfest.

Auch eine mögliche Alternative, der Einsatz aluminiumbasierter Elementen in den Kabeln und kupferbasierter Elemente in der Verbindungszone ist mit Schwierigkeiten behaftet. Da zwischen dem Kupferkontakt und dem Aluminiumkabel ein großes elektrochemisches Potenzial besteht, wären solche Kabel stark korrosionsgefährdet. Darüber hinaus ist das Fügen von Kupfer und Aluminium mit den heutigen Technologien relativ aufwändig. Um den genannten technologischen Schwierigkeiten entgegenzutreten, entwickelten Forscher der Lehrstühle für Hochspannungs- und Anlagentechnik sowie für Umformtechnik und Gießereiwesen in Kooperation mit BMW im Rahmen des Projekts LEIKO ein innovatives Kontaktierungskonzept auf Aluminiumbasis.

Ein Stahlblechkäfig, aus Gründen der elektromagnetischen Verträglichkeit ohnehin notwendig, übernimmt die mechanische Stabilisierung des Steckers und sorgt für die langzeitstabile Abstützung der Kontaktkraftfeder. Indem die notwendige Kontaktkraft nicht mehr durch die Kontaktelemente selbst aufgebracht wird, wandelt sich das ursprünglich problematische Kriechverhalten von Aluminium in eine Kontakt stabilisierende und damit positive Eigenschaft. Damit ist auch über eine Lebensdauer von zehn Jahren eine konstante Kontaktkraft gewährleistet.

Die Forscher entwickelten dazu eine spezielle, keilförmige Geometrie für die Aluminiumkontakte. Das Kriechverhalten des Aluminiums führt nun dazu, dass sich die beiden Kontakte über die Laufzeit zunehmend anschmiegen und sich die elektrische Verbindung sogar noch verbessert. Durch den durchgängigen Einsatz von Aluminiumlegierungen und die geschickte Anordnung der Beschichtung mit edleren Metallen konnte außerdem die Bildung korrosionsträchtiger Lokalelemente auf unkritische Stellen im Gesamtaufbau verlagert werden.

Ein weiteres Problem bei Aluminium ist die geringere elektrische Leitfähigkeit. Besonders für Leistungsbordnetze müssen die um etwa 60 Prozent größeren Leitungsquerschnitte bei der Konstruktion von Kabelkanälen und Durchführungen berücksichtigt werden. Allerdings, so fanden die Forscher heraus, können die Richtwerte aus der Verarbeitung von Kupferkabeln, die die Biegeradien in Abhängigkeit zum Durchmesser setzen, für Aluminiumkabel verwendet werden, da Aluminium ebenfalls eine gute Biegsamkeit besitzt.

Um das Langzeitverhalten der beschichteten Aluminiumkontakte auch unter den widrigsten Kraftfahrzeug-typischen Umgebungseinflüssen bestimmen zu können, konnten die Projektpartner gemeinsam mit führenden Zulieferbetrieben ein weiteres Forschungsprojekt ins Leben rufen. Dieses von der Bayerischen Forschungsstiftung (BFS) geförderte Projekt wird bis Juli 2012 eine Aussage über das Alterungsverhalten und damit die Einsatzeignung des Konzepts treffen.

Erste Ergebnisse deuten darauf hin, dass die Materialsubstitution erhebliche Gewichts-, Kosten- und letztlich auch Emissionsvorteile ermöglichen würde. “Wir rechnen damit, dass bis 2020 die Hochvoltbordnetze der meisten Elektrofahrzeuge auf Aluminium basieren. Auch in die Niedervoltbordnetze wird Aluminium Einzug halten, da der Kupferpreis mit zunehmender Nachfrage signifikant weiter steigen wird,” sagt Professor Udo Lindemann vom Lehrstuhl für Produktentwicklung der TU München.

Eingebettet sind diese Projekte in die wissenschaftliche Arbeit des von der Deutschen Forschungsgemeinschaft (DFG) geförderten Sonderforschungsbereichs 768, Zyklenmanagement von Innovationsprozessen. Dieser bündelt Kompetenzen aus Informatik, Ingenieur-, Wirtschafts- und Sozialwissenschaften, um die an den Schnittstellen des Innovationsprozesses liegenden Herausforderungen gemeinsam mit Partnern aus der Industrie zu untersuchen. Ziel dieser Forschung ist es, aus einer interdisziplinären Sichtweise heraus industrierelevante Lösungen zum Umgang mit dynamischen Veränderungen sowohl des Unternehmensumfelds als auch der unternehmensinternen Prozesslandschaften zu erarbeiten.

Teil der Forschungsarbeit des SFB 768 ist ein studentisches Projekt zur Entwicklung eines elektrisch betriebenen Gokarts. Um die vielfältigen Herausforderungen des Innovationsmanagements unmittelbar mitzuerleben, führten die Studenten, ausgehend von einer Standardrahmenkonstruktion, den vollständige Entwicklungsprozess für alle Teilsysteme des Gesamtfahrzeugs durch. Auch die Ergebnisse des LEIKO-Projekts fließen hier ein – das gesamte Hochvoltbordnetz ist in Aluminium ausgeführt.

Die Ergebnisse der Forschungsarbeiten sollen auch in das TUM-Elektrofahrzeug MUTE Einzug halten, das auf der IAA 2011 vorgestellt wird.

Publikation
Langer, S.; Lindemann, U.: Managing Cycles in Development Processes - Analysis and Classification of External Context Factors, in 17th International Conference on Engineering Design, M. N. Bergendahl, M. Grimheden, and L. Leifer, Eds. Stanford University, California, USA: Design Society, 2009, pp. 1-539 - 1-550
Kontakt
Prof. Dr. Udo Lindemann
Lehrstuhl für Produktentwicklung
Technische Universität München
Boltzmannstr. 15, 85748 Garching, Germany
Tel.: +49 89 289 15130, Fax: -15144
E-Mail: sekretariat@pe.mw.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.pe.mw.tum.de

Weitere Nachrichten aus der Kategorie Automotive:

nachricht Wichtige Schritte auf dem Weg zum automatisierten Fahren
29.03.2018 | Universität Bremen

nachricht Es wird noch heller: Innovative Leuchten in der Automobilindustrie
28.03.2018 | Technische Hochschule Nürnberg Georg Simon Ohm

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics