Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich Risse ausbreiten - Simulation von Rissen in verschiedenen Materialien

22.07.2009
Holz, Metall, Kunststoffe, Glas, Knochen - brechen kann fast alles. Doch was passiert, bevor es zum großen Finale kommt?

Wie breiten sich Risse aus, wann verzweigen sie sich und welchen Einfluss haben Haarrisse auf den Hauptriss? Wissenschaftler des Instituts für Mechanik (Bauwesen) der Uni Stuttgart nehmen sich dieser Fragen an im Rahmen des Projekts "Computational modeling of phenomena in dynamic fracture" - einem der Forschungsprojekte des Exzellenzclusters "Simulations Technology" (SimTech). Ihr Ziel: Numerische Methoden zu entwickeln, mittels derer sich die Rissausbreitung und -verzweigung simulieren lässt.

Kommerzielle Softwareprogramme zur Simulation von Rissausbreitung und -verzweigung gibt es derzeit nur wenige. "Der Bedarf ist da", weiß Dr. Christian Linder, Juniorprofessor für "Micromechanics of Materials" am Institut für Mechanik (Bauwesen). Da so gut wie jedes Material brechen kann, interessieren sich Ingenieure, Physiker und Mathematiker gleichermaßen für die Phänomene in sich ausbreitenden Rissen und deren mathematische Modellierung. Die Hauptfragen, denen sich die Stuttgarter Wissenschaftler beim SimTech-Projekt "Computational modeling of phenomena in dynamic fracture" derzeit widmen, um die Rissausbreitung und -verzweigung physikalisch zu verstehen und verbesserte Kriterien für deren Modellierung zu erarbeiten, sind: Wann und wie verzweigen sich Risse? Beeinflussen Haarrisse, also die feinen Abzweigungen, den sich ausbreitenden Hauptriss?

Um berechnen zu können, wie sich Risse in den unterschiedlichsten Materialien ausbreiten, nutzen Linder und sein Team die Finite-Elemente-Methode (FEM). Bei dem im Ingenieurwesen weit verbreiteten numerischen Berechnungsverfahren zur näherungsweisen Lösung von Differentialgleichungen werden die unendlich vielen Freiheitsgrade auf eine endliche - finite - und somit berechenbare Anzahl reduziert. Die Rissausbreitung in die Finite-Elemente-Methode einzubinden ist mathematisch allerdings sehr anspruchsvoll. Die Schritte für die Zukunft haben die "Stuttgarter Rissforscher" schon geplant: Von der Makrostruktur wollen sie sich immer mehr in Richtung der Mikroebene vorarbeiten. Dort sollen die Finite-Elemente-Methode mit der Molekulardynamik kombiniert und schließlich die Risse auch in 3-D dargestellt werden.

Im Exzellenzcluster "Simulations Technologie", mit dem die Universität Stuttgart 2007 beim Forschungscluster-Wettbewerb der Exzellenzinitiative von Bund und Ländern erfolgreich war, werden die vielfältigen Expertisen der Universität Stuttgart auf dem Gebiet der Simulationstechnologien gebündelt und weiterentwickelt. Das SimTech-Projekt "Computational modeling of phenomena in dynamic fracture" ist innerhalb der sechs Forschungsfelder des Exzellenzclusters im Forschungsfeld B "Advanced Mechanics of Multi-scale and Multi-field Problems" angesiedelt.

Ansprechpartner: Jun.-Prof. Christian Linder, Institut für Mechanik (Bauwesen), Tel. 0711 685 66382;
e-mail: linder@mechbau.uni-stuttgart.de
Text und Bild unter www.uni-stuttgart.de/presse/mediendienst/7/

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Smarte Gebäude durch innovative Dächer und Fassaden
31.08.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Nachhaltiger Baustoff: Pilze als Dämmmaterial nutzen
30.08.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik