Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich Risse ausbreiten - Simulation von Rissen in verschiedenen Materialien

22.07.2009
Holz, Metall, Kunststoffe, Glas, Knochen - brechen kann fast alles. Doch was passiert, bevor es zum großen Finale kommt?

Wie breiten sich Risse aus, wann verzweigen sie sich und welchen Einfluss haben Haarrisse auf den Hauptriss? Wissenschaftler des Instituts für Mechanik (Bauwesen) der Uni Stuttgart nehmen sich dieser Fragen an im Rahmen des Projekts "Computational modeling of phenomena in dynamic fracture" - einem der Forschungsprojekte des Exzellenzclusters "Simulations Technology" (SimTech). Ihr Ziel: Numerische Methoden zu entwickeln, mittels derer sich die Rissausbreitung und -verzweigung simulieren lässt.

Kommerzielle Softwareprogramme zur Simulation von Rissausbreitung und -verzweigung gibt es derzeit nur wenige. "Der Bedarf ist da", weiß Dr. Christian Linder, Juniorprofessor für "Micromechanics of Materials" am Institut für Mechanik (Bauwesen). Da so gut wie jedes Material brechen kann, interessieren sich Ingenieure, Physiker und Mathematiker gleichermaßen für die Phänomene in sich ausbreitenden Rissen und deren mathematische Modellierung. Die Hauptfragen, denen sich die Stuttgarter Wissenschaftler beim SimTech-Projekt "Computational modeling of phenomena in dynamic fracture" derzeit widmen, um die Rissausbreitung und -verzweigung physikalisch zu verstehen und verbesserte Kriterien für deren Modellierung zu erarbeiten, sind: Wann und wie verzweigen sich Risse? Beeinflussen Haarrisse, also die feinen Abzweigungen, den sich ausbreitenden Hauptriss?

Um berechnen zu können, wie sich Risse in den unterschiedlichsten Materialien ausbreiten, nutzen Linder und sein Team die Finite-Elemente-Methode (FEM). Bei dem im Ingenieurwesen weit verbreiteten numerischen Berechnungsverfahren zur näherungsweisen Lösung von Differentialgleichungen werden die unendlich vielen Freiheitsgrade auf eine endliche - finite - und somit berechenbare Anzahl reduziert. Die Rissausbreitung in die Finite-Elemente-Methode einzubinden ist mathematisch allerdings sehr anspruchsvoll. Die Schritte für die Zukunft haben die "Stuttgarter Rissforscher" schon geplant: Von der Makrostruktur wollen sie sich immer mehr in Richtung der Mikroebene vorarbeiten. Dort sollen die Finite-Elemente-Methode mit der Molekulardynamik kombiniert und schließlich die Risse auch in 3-D dargestellt werden.

Im Exzellenzcluster "Simulations Technologie", mit dem die Universität Stuttgart 2007 beim Forschungscluster-Wettbewerb der Exzellenzinitiative von Bund und Ländern erfolgreich war, werden die vielfältigen Expertisen der Universität Stuttgart auf dem Gebiet der Simulationstechnologien gebündelt und weiterentwickelt. Das SimTech-Projekt "Computational modeling of phenomena in dynamic fracture" ist innerhalb der sechs Forschungsfelder des Exzellenzclusters im Forschungsfeld B "Advanced Mechanics of Multi-scale and Multi-field Problems" angesiedelt.

Ansprechpartner: Jun.-Prof. Christian Linder, Institut für Mechanik (Bauwesen), Tel. 0711 685 66382;
e-mail: linder@mechbau.uni-stuttgart.de
Text und Bild unter www.uni-stuttgart.de/presse/mediendienst/7/

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Wirbel als Räder der Natur
28.03.2017 | Karlsruher Institut für Technologie

nachricht Stadtplanung im Klimawandel: HafenCity Universität Hamburg entwickelt Empfehlungen
24.03.2017 | HafenCity Universität Hamburg

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE