Wie sich Risse ausbreiten – Simulation von Rissen in verschiedenen Materialien

Wie breiten sich Risse aus, wann verzweigen sie sich und welchen Einfluss haben Haarrisse auf den Hauptriss? Wissenschaftler des Instituts für Mechanik (Bauwesen) der Uni Stuttgart nehmen sich dieser Fragen an im Rahmen des Projekts „Computational modeling of phenomena in dynamic fracture“ – einem der Forschungsprojekte des Exzellenzclusters „Simulations Technology“ (SimTech). Ihr Ziel: Numerische Methoden zu entwickeln, mittels derer sich die Rissausbreitung und -verzweigung simulieren lässt.

Kommerzielle Softwareprogramme zur Simulation von Rissausbreitung und -verzweigung gibt es derzeit nur wenige. „Der Bedarf ist da“, weiß Dr. Christian Linder, Juniorprofessor für „Micromechanics of Materials“ am Institut für Mechanik (Bauwesen). Da so gut wie jedes Material brechen kann, interessieren sich Ingenieure, Physiker und Mathematiker gleichermaßen für die Phänomene in sich ausbreitenden Rissen und deren mathematische Modellierung. Die Hauptfragen, denen sich die Stuttgarter Wissenschaftler beim SimTech-Projekt „Computational modeling of phenomena in dynamic fracture“ derzeit widmen, um die Rissausbreitung und -verzweigung physikalisch zu verstehen und verbesserte Kriterien für deren Modellierung zu erarbeiten, sind: Wann und wie verzweigen sich Risse? Beeinflussen Haarrisse, also die feinen Abzweigungen, den sich ausbreitenden Hauptriss?

Um berechnen zu können, wie sich Risse in den unterschiedlichsten Materialien ausbreiten, nutzen Linder und sein Team die Finite-Elemente-Methode (FEM). Bei dem im Ingenieurwesen weit verbreiteten numerischen Berechnungsverfahren zur näherungsweisen Lösung von Differentialgleichungen werden die unendlich vielen Freiheitsgrade auf eine endliche – finite – und somit berechenbare Anzahl reduziert. Die Rissausbreitung in die Finite-Elemente-Methode einzubinden ist mathematisch allerdings sehr anspruchsvoll. Die Schritte für die Zukunft haben die „Stuttgarter Rissforscher“ schon geplant: Von der Makrostruktur wollen sie sich immer mehr in Richtung der Mikroebene vorarbeiten. Dort sollen die Finite-Elemente-Methode mit der Molekulardynamik kombiniert und schließlich die Risse auch in 3-D dargestellt werden.

Im Exzellenzcluster „Simulations Technologie“, mit dem die Universität Stuttgart 2007 beim Forschungscluster-Wettbewerb der Exzellenzinitiative von Bund und Ländern erfolgreich war, werden die vielfältigen Expertisen der Universität Stuttgart auf dem Gebiet der Simulationstechnologien gebündelt und weiterentwickelt. Das SimTech-Projekt „Computational modeling of phenomena in dynamic fracture“ ist innerhalb der sechs Forschungsfelder des Exzellenzclusters im Forschungsfeld B „Advanced Mechanics of Multi-scale and Multi-field Problems“ angesiedelt.

Ansprechpartner: Jun.-Prof. Christian Linder, Institut für Mechanik (Bauwesen), Tel. 0711 685 66382;
e-mail: linder@mechbau.uni-stuttgart.de
Text und Bild unter www.uni-stuttgart.de/presse/mediendienst/7/

Media Contact

Ursula Zitzler idw

Weitere Informationen:

http://www.uni-stuttgart.de

Alle Nachrichten aus der Kategorie: Architektur Bauwesen

Die zukunftsorientierte Gestaltung unseres Wohn- und Lebensraumes erhält eine immer größer werdende Bedeutung. Die weltweite Forschung in den Bereichen Architektur und Bauingenieurwesen leistet hierzu einen wichtigen Beitrag.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Nachhaltiges Bauen, innovative Baumaterialien, Bautenschutz, Geotechnik, Gebäudetechnik, Städtebau, Denkmalschutz, Bausoftware und Künstliche Intelligenz im Bauwesen.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer