Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die erste Brücke aus PLEXIGLAS®

05.11.2007
Kooperation zwischen TU Darmstadt und Evonik Röhm GmbH

Beim Bau einer Brücke greifen Ingenieur normalerweise auf die traditionellen Tragmaterialien Beton, Stahl und Holz zurück. Darmstädter Bauingenieure haben dieses Spektrum nun mit einer völlig neuen Idee erweitert: Dort ist jetzt die weltweit erste Brücke mit PLEXIGLAS® als tragendem Element gebaut worden.

Die 26 Meter lange Fußgängerbrücke über einen ehemaligen Wassergraben am Darmstädter Schloss verwendet als Haupttragelement erstmals Verbundträger aus PLEXIGLAS® und Brettschichtholz. Die Idee zu diesem neuartigen transparenten Tragsystem stammt von dem Bauingenieur und ehemaligen TU-Präsidenten Prof. Dr.-Ing. Johann-Dietrich Wörner, an dessen Lehrstuhl auch die Forschung und Entwicklung hierzu in Kooperation mit der Evonik Röhm GmbH stattfand. Die komplett vorgefertigte Brücke wurde in einem Stück eingehoben.

Zwei im Schlossgraben angeordnete Stützenpaare aus Stahl bilden die Auflager für die Brückenträger, die als Einfeldträger mit zwei Kragarmen ausgeführt werden. Dadurch ist es möglich, die neue Brücke komplett von der denkmalgeschützten Bausubstanz zu trennen und keinerlei Lasten in den Bestand einzuleiten.

Im Querschnitt ähneln die beiden Hauptträger einem I-Profil. Die Ober- und Untergurte aus Holz übernehmen dabei die auftretenden Druck- und Zugkräfte, während die PLEXIGLAS®-Scheibe als Steg die beiden Gurte auf Abstand hält und miteinander verbindet. Die jeweils zweiteiligen Holzgurte werden mit dem dazwischen liegenden Kunststoff verschraubt. Aufgrund der Transparenz wirkt der Hauptträger sehr filigran und leicht.

Die 1,60 Meter breite Lauffläche liegt zwischen den beiden bis zu drei Meter hohen Verbundträgern. Die Verkehrslasten von 5 kN/m² (entspricht 500 kg/m²) werden über quer zur Laufrichtung angeordnete Stahlprofile seitlich in die Untergurte eingeleitet. Die Stahlunterkonstruktion des Gehweges ist nicht mit den Stützen verbunden und dient in horizontaler Richtung als Windaussteifung. Auch die U-förmig verschweißten Stahlprofile über den Stützen dienen zur Aussteifung gegen die Windbelastung. Dadurch wird es möglich, die Forderungen des Denkmalschutzes nach bautechnischer Trennung der neuen Brücke vom Schloss einzuhalten.

Die Darmstädter Brücke aus PLEXIGLAS® in Zahlen
Länge: ca. 26 Meter
Breite: 4,10 Meter
Höhe: bis zu 3 Meter
Höhe des Steges über dem Graben: maximal ca. 3 Meter
Gesamtgewicht der Brücke: ca. 28 Tonnen
Abstand der beiden Stützen: 15,20 Meter
Breite des eigentlichen Laufsteges: 1,60 Meter
Angenommene Verkehrslast: 5 kN/m² (500 kg/m²)
Konstruktionstyp des Hauptträgers: Verbundträger aus Holz und PLEXIGLAS®
Holzquerschnitte (oben und unten): jeweils 2x15/20 Zentimeter
Dicke der PLEXIGLAS®-Scheiben: 70 mm
Abmessungen PLEXIGLAS®-Scheiben: bis zu 8 x 3 m
Gesamtgewicht PLEXIGLAS®: 11 t

Jörg Feuck | idw
Weitere Informationen:
http://www.tu-darmstadt.de/presse/bildarchiv/ -

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Smarte Gebäude durch innovative Dächer und Fassaden
31.08.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Nachhaltiger Baustoff: Pilze als Dämmmaterial nutzen
30.08.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie