Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kasseler Wissenschaftler entwickeln zerstörungsfreie Prüfverfahren für betagte Bauwerke

29.01.2004

Nicht alle Bauwerke sind für die Ewigkeit. Zum Beispiel nicht die große Zahl von Brücken, die in Deutschland nach dem Krieg entstanden sind. Sie sind besonders sicherheitsrelevant und kommen jetzt in ein Alter, in dem sie sorgfältig auf Korrosionsschäden geprüft werden müssen. Denn Brücken aus Spannbeton sind aus Gründen der Statik von Stahlkabeln durchzogen, die in zementgefüllten Hüllrohren verlaufen. Hat sich in diese Füllung etwas Luft eingeschlichen, haben wir das Problem: Der Rost beginnt zu nagen, und zwar dort, wo man ihn so gar nicht zu Gesicht bekommt.

Eigentlich haben damit die Bauingenieure eine Nuss zu knacken, Lösungen aber kommen von Kasseler Elektroingenieuren, die in Zusammenarbeit mit den Bauingenieuren dabei sind, den Beton gewissermaßen gläsern zu machen. “Gläserner Beton” ist die populäre Bezeichnung für ein Forschungsvorhaben, in das die Deutsche Forschungsgemeinschaft (DFG), einer der wichtigsten Finanziers von Forschung in Deutschland, erhebliche Summen investiert, in diesem Fall in eine Forschergruppe, die sich aus Mitgliedern der Universitäten Stuttgart, Dortmund, Darmstadt, der Bundesanstalten für Materialprüfung in Berlin und Weimar, des Fraunhofer-Instituts Zerstörungsfreie Prüfverfahren in Dresden und der Universität Kassel zusammensetzt. Hier leistet Dr. Karl-Jörg Langenberg, Professor für Theoretische Elektrotechnik mit seinen Forschungen zwei Beiträge, um die Sicherheit der Brücken zu erhalten. Zunächst gilt es, die Hüllrohre mit den Stahlkabeln überhaupt aufzuspüren. Ihre Lage ist in den kritischen älteren Brücken nämlich keineswegs dokumentiert. Langenberg und seine Mitarbeiter nutzen dazu eine Art Bodenradar, das elektromagnetische Wellen aussendet, die ein Echo erzeugen, wenn sie auf ein stählernes Hindernis treffen. Als Ultraschall kennen dies nicht nur alle werdenden Eltern aus der Medizin. Während allerdings der menschliche Körper ganz überwiegend aus Wasser besteht, hat der Beton mit unterschiedlichen Körnungen und kleinen Luftbläschen erheblich größere Tücken. So kommt es, dass mit dem Aufspüren der Rohre noch kein Bild über ihren inneren Zustand gewonnen werden kann. Die Lösung fanden Langenberg und seine Mitarbeiter Dr. Klaus Mayer und Dr. René Marklein in der Erdbebenforschung, aus der man weiß, dass sich die Stöße in zwei Wellen ausbreiten, den primären, schnellen, und den sekundären, langsameren. Ähnlich den sekundären Erdbebenwellen schicken die Kasseler Wissenschaftler mit so genannten Prüfköpfen mechanische Wellen durch den Beton und berechnen das Ausbreitungsverhalten. Ihr Echo erwies sich für diesen Baustoff als geeignet, um im Computer ein brauchbares Bild seines Inneren zu erzeugen und damit verlässliche Hinweise auf kritische Stellen mit Luftlöchern zu geben.

Mit diesen Prüfmethoden können Brücken in Zukunft rasch und elegant untersucht werden, ohne dass menschliche Experten jeden Quadratzentimeter des Bauwerks einer Sicht- und Schallprüfung unterziehen. Für die Kasseler Wissenschaftler ist die Aufgabe damit allerdings noch nicht erledigt. Denn es gilt, dem Computer ein Rechenverfahren vorzugeben, das die empfangenen Echos in leicht und eindeutig interpretierbare Bilder umsetzt, in dem Störsignale, wie sie zum Beispiel durch die in den Beton eingelassenen Stahlgeflechte erzeugt werden, keine Rolle mehr spielen.

Partner im Forschungsverbund wie die Bundesanstalten für Materialprüfung in Berlin und Weimar oder die Deutsche Bahn als Unterstützer der Forschergruppe, die als Betreiberin einer riesigen Zahl von Brücken ein besonderes Interesse an diesen neuen Verfahren hat, prüfen die in Kassel gewonnenen theoretischen Erkenntnisse vor Ort. Die Mitglieder der Forschungsgruppe in Darmstadt und Dortmund arbeiten an Herstellungsverfahren, die Lufteinschlüsse in Beton vermeiden und in Stuttgart und Dresden werden ergänzend zu den Kasseler Verfahren akustische Methoden erprobt. 1,5 Mio. Euro hat die DFG der Forschergruppe jetzt für drei Jahre bewilligt, nachdem für einen ersten Dreijahreszeitraum schon einmal 1 Mio. zur Verfügung gestanden hatte. Viel Geld, das für die Sicherheit unserer Verkehrswege aber sicher gut angelegt ist.

Info Universität Kassel, Prof. Dr. Karl-Jörg Langenberg, Fachbereich 16 tel 0561-804-6368, fax -6489

Karl-Jörg Langenberg | Universität Kassel

Weitere Berichte zu: Beton zerstörungsfreie Prüfverfahren

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Additive Fertigung: Bauteile völlig neu denken
02.12.2016 | Hochschule Landshut

nachricht Kombination von Isolierung und thermischer Masse
01.12.2016 | Fraunhofer Institute for Chemical Technology ICT

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie