Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Turbo-Züchtung schafft Super-Kartoffel

08.12.2009
Die Schale ist hellbraun, das Fleisch saftig und gelb – rein äußerlich sieht die neue Kartoffel aus wie jede andere.

Doch in ihrem Inneren ist sie anders: Ihre Zellen produzieren reines Amylopektin, eine Stärke, die in der Papier-, Textil- und Nahrungsindustrie benötigt wird. Die neue Kartoffel, die jetzt zum ersten Mal geerntet und verarbeitet wird, haben Fraunhofer-Forscher mit Hilfe eines neuen, besonders schnellen Züchtungsverfahrens entwickelt.

Der Herbst 2009 war für das Unternehmen Emsland Group ein besonderer Herbst: Zum ersten Mal in der Geschichte des größten deutschen Kartoffelstärke-Herstellers wurden Tilling-Kartoffeln verarbeitet, die ausschließlich die Stärke Amylopektin enthalten. Aus dieser lassen sich nicht nur Speisestärken zum Binden von Suppen und Desserts gewinnen, sondern auch Kleister und glättende Beschichtungen für die Papier- und Garnherstellung. »Die Kartoffel ist das erste durch Tilling gewonnene Produkt in Deutschland, das Markt-reife erlangt hat«, erläutert Prof. Dirk Prüfer vom Fraunhofer-Institut für Molekulare und Angewandte Ökologie IME.

Tilling – die Abkürzung steht für »Targeting Induced Local Lesions In Genoms« – ist ein Züchtungsverfahren, mit dem die Forscher der Evolution auf die Sprünge helfen. In der Natur geht die Evolution langsam: Durch Mutation und Selektion verändern sich Tier- und Pflanzenarten. Im Laufe der Generationen entwickeln sich diejenigen weiter, die sich auf Grund ihrer genetischen Ausstattung am besten an die gerade herrschenden Umweltbedingungen anpassen konnten. Andere Arten sterben aus. Der Mensch nutzt den Evolutionsprozess seit Jahrtausenden für seine Zwecke, indem er besonders ertragreiche Sorten weitervermehrt. Moderne Züchtungsverfahren funktionieren im Prinzip genauso, allerdings wird die natürliche Mutationsrate beschleunigt: »Mit Hilfe von Chemikalien lässt sich schnell eine große Anzahl von Mutanten gewinnen«, sagt Jost Muth vom IME, der an der Entwicklung der neuen Stärke-Kartoffel beteiligt war. »Wir arbeiten hier mit natürlichen Prinzipien: In der Natur löst das Sonnenlicht Veränderungen im Erbgut aus. Mit Chemie erreichen wir dasselbe, nur schneller.«

Bisher war Mutationszüchtung ein mühsamer Prozess: »Die Züchter mussten das mutierte Saatgut auf dem Feld ausbringen. Erst Monate später, am Ende der Vegetationsperiode, konnten sie sehen, ob eine der genetischen Veränderungen den gewünschten Erfolg hatte. Die meisten der erzeugten Mutationen konnten dabei gar nicht entdeckt werden, weil das Merkmal oft nicht dominant ist«, so Prüfer. Seinem Team ist es gelungen, die Umsetzung zu beschleunigen. Im Labor am IME werden die mutierten Samen zum Keimen gebracht. Sobald die ersten Blätter erscheinen, ist Erntezeit: Die Forscher nehmen eine Blattprobe, brechen die Zellstrukturen auf, isolieren das Genom und analysieren es. Innerhalb weniger Wochen lässt sich auf diese Weise herausfinden, ob eine Mutation die gewünschten Eigenschaften hat.

In einem durch die Fachagentur »Nachwachsende Rohstoffe« geförderten Projekt haben die Forscher am IME in Zusammenarbeit mit den Firmen Bioplant und Emslandstärke den Super-Kartoffelkeim aufgespürt: 2748 Keimlinge mussten untersucht werden, bis derjenige identifiziert war, der ausschließlich die Stärkekomponente Amylopektin produziert. Aus diesem Keim gewannen die Experten die erste Generation von Super-Kartoffeln. In ihrem Erbgut sind nur die Gene aktiv, die die Bildung von Amylopektin auslösen, während die Amylose-Gene ausgeschaltet sind. »Bisher enthielten Kartoffeln immer beide Stärkearten. Die Industrie musste das Amylopektin von der Amylose abtrennen – ein energie- und kostenintensives Verfahren«, erklärt Prüfer. Da Tilling-Kartoffeln nur Amylopektin enthalten, entfällt dieser Prozessschritt. Allein in Deutschland benötigt die Papier- und Klebstoffindustrie jährlich 500 000 Tonnen hochreines Amylopektin. Dazu kommen der Bedarf der Lebensmittelbranche und der Textilindustrie – letztere nutzt die Stärke, um Garne vor dem Weben zu glätten.

100 Tonnen der neuen Super-Kartoffeln wurden in diesem Herbst geerntet. »Sie lassen sich wie gewohnt in den Fertigungslinien verarbeiten«, berichtet Muth. »Besondere Maßnahmen sind nicht notwendig, weil die Tilling-Kartoffeln ganz normale Züchtungen sind, die kein gentechnisch verändertes Material enthalten.« Das Beispiel zeigt, dass sich mit klassischer oder moderner Turbo-Züchtung viel erreichen lässt. Die Voraussetzung für jede Art der Züchtung ist jedoch, dass das Gen, das zur Ausprägung der gewünschten Eigenschaft führt, in der Pflanze vorhanden und bekannt ist – wie das Gen für die Produktion von Amylose in Kartoffeln. »Wenn wir fremde Gene in die Pflanze einschleusen wollen, um beispielsweise Tabakpflanzen dazu zu bekommen, pharmakologische Wirkstoffe zu produzieren, ist es unumgänglich und sinnvoll gentechnische Verfahren zu benutzen«, resümiert Prüfer: »Grundsätzlich gilt beim Umgang mit Genen: Soviel Veränderung wie nötig aber so wenig wie möglich.«

Prof. Dr. Dirk Prüfer | Fraunhofer Gesellschaft
Weitere Informationen:
http://www.fraunhofer.de/presse/presseinformationen/2009/12/super-kartoffel.jsp

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Erstmals Studie zu Hai- und Rochenarten in deutschen Meeren
19.04.2017 | Bundesamt für Naturschutz

nachricht Wenn Städte immer mehr an Boden gewinnen: Wie gelingt Land- und Gartenbau südlich der Sahara?
11.04.2017 | Carl von Ossietzky-Universität Oldenburg

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen