Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gen-Antagonist sorgt für Ordnung bei der Holzbildung

18.09.2012
Die Biosynthese von Holz ist das Ergebnis eines komplexen Zusammenspiels verschiedener Gene. In Pappeln haben Forscher ein ungewöhnliches Gen entdeckt, dass die Holzbildung auf mehreren Ebenen reguliert. Es verhindert, dass Bäume krumm oder verkrüppelt wachsen.

Pflanzen verholzen, in dem sie in ihrem Sprossgewebe vermehrt Xylemzellen ausbilden und in die Zellwände Lignin, Cellulose und Hemizellulose einlagern. Die Pflanze bildet so ein festes Stütz- und Leitgewebe, das ihr beim Höhenwachstum ausreichend Stabilität gibt. Zahlreiche Gene sind bei der Holzbildung beteiligt.


Holz ist ein vielseitiger Rohstoff, an den je nach Verwendung andere Ansprüche gestellt werden (Quelle: © Irene Lehmann / pixelio.de).

Experimente mit Arabidopsis und Pappeln zeigen, dass vier Proteine der SND1-Familie eine Kaskade von Transkriptionsfaktoren und Signalweg-Genen regulieren, die die Bildung der sekundären Zellwand fördern. Eine weitere Gruppe von VND-Transkriptionsfaktoren aktiviert Gene, die die Gefäßbildung forcieren. Bislang unbekannt war, wie diese Regulation auf Ebene der Transkriptionsfaktoren abläuft.

Außenseiter-Protein schaltet Familie aus

In Experimenten mit Pappeln (Populus trichocarpa) haben Wissenschaftler einen in Pflanzen bisher unbekannten Mechanismus der Genregulation entdeckt: Eine gespleißte Variante (PtrSND1-A2IR) eines SND1-Transkriptionsfaktors unterdrückte die Expression der anderen vier vollständig gespleißten SND1-Gene und die eines weiteren Gens, das diese vier Gene zusammen aktivieren (PtrMYB021). Dass eine Negativ-Variante eines Transkriptionsfaktors die Selbstregulierung seiner ganzen Genfamilie unterdrücken kann, wurde bisher in Pflanzen nicht beschrieben.

Während Transkriptionsfaktor-Proteine gewöhnlich im Zellkern, also in der Nähe der genetischen Informtionszentrale lokalisiert sind, wurde die Negativ-Variante ausschließlich im Cytoplasma entdeckt. War eines der vier anderen SND1-Proteine im Zellkern vorhanden, wurde die Negativ-Variante aus dem Cytoplasma in den Nukleus transportiert. Dort band sie an ihre Familienmitglieder und machte diese mittels Dimerisation funktionsuntüchtig. Es entstand ein neues Molekül, ein Heterodimer mit nur einem statt der gewöhnlich zwei DNA-Bindungsstellen. Dieses war zwar weiterhin zur Dimerisation fähig, konnte jedoch nicht mehr an die Promotoren der SND1-Mitglieder binden. Die Expression der SND1-Gene und die (Trans)aktivierung ihrer Zielgene wurden dadurch auf verschiedenen Ebenen gehemmt. Dies veränderte das genetische Regelnetzwerk der Holzbildung.

Wachstum im Gleichgewicht

Mit dem ungewöhnlichen Regulationsmechanismus trägt die negative Spleißvariante zu einem Gleichgewicht zwischen Holzbildung und Pflanzenwachstum bei und verhindert damit krumme und verkrüppelte Bäume.

Biologische Prozesse wie die Bildung der sekundären Zellwand oder die Holzbildung werden auf mehreren Ebenen geregelt. Der Antagonist PtrSND1-A2IR verdeutlicht die komplexe Funktionsweise dieses hierarchischen Regelnetzwerks aus Genen und Transkriptionsfaktoren.

Die Forscher vermuten, dass der entdeckte Mechanismus nicht nur bei SND1-Genen, sondern auch bei der Regulierung von VNP-Transkriptionsfaktoren wirksam ist. Diese regulieren die Gefäßbildung. So zeigten Experimente, dass bei Arabidopsispflanzen mit gestörter Gefäßbildung ein veränderter VND-Transkriptionsfaktor ohne Transaktivierungsdomäne überexprimiert war.

Holz für jede Anwendung

Ein besseres Verständnis der Regulationsprozesse bei der Holzbildung könnte ein wichtiger Schritt zu einem „Holz nach Maß“ sein. So ist etwa ein hoher Ligningehalt bei Bauholz erwünscht. Vor der Produktion von Papier und Biokraftstoffen hingegen muss das Lignin bisher aufwendig entfernt werden. Ließe sich der Ligningehalts im Holz regulieren, könnte Holz für spezielle Anwendungen optimiert werden. Studien zeigen, dass der Klimawandel die Biosynthese von Holz verändert. Das Wissen über die Syntheseprozesse ermöglicht damit auch eine gezielte Anpassung an die sich verändernden Umweltbedingungen z.B. von Plantagen zur Holzgewinnung.

Quelle:

Li, Q. et al. (2012): Splice variant of the SND1 transcriptionfactor is a dominant negative of SND1members and their regulation in Populus trichocarpa. PNAS, Vol. 109, Nr. 36 (4. September 2012), 14699-14704, doi: 10.1073/pnas.1212977109.

Li, Q. et al. | Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/journal/aktuelles/gen-antagonist-sorgt-fuer-ordnung-bei-der-holzbildung?piwik_campaign=newsletter

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Biologische Vielfalt von grünlanddominierten Kulturlandschaften unter der Lupe
20.04.2018 | Hochschule Weihenstephan-Triesdorf

nachricht Nitrat-Problem der Landwirtschaft in Luft auflösen
29.03.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics