Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Phasenuhr“ als hochpräzise Atomwaage

19.02.2013
Die Frequenz, mit der ein einzelnes Ion im Magnetfeld einer Penningfalle kreist, bietet bislang den genauesten Zugang zu Kernmassen kurzlebiger Isotope.

Physiker des MPI für Kernphysik Heidelberg und der Universität Greifswald haben nun am GSI Helmholtzzentrum Darmstadt die Kreisbewegung des Ions selbst abgebildet, die gleich dem Sekundenzeiger einer Uhr die Genauigkeit der Messungen steigert. Damit lässt sich die erforderliche Messzeit für instabile Nuklide deutlich verkürzen [Physical Review Letters, 19.02.2013 online].


Abb.1: Schematischer Aufbau der SHIPTRAP-Falle mit ortsauflösendem Detektor zu Abbildung der Kreisbewegung des Ions.
Detailfoto oben: G. Otto / GSI Helmholtzzentrum für Schwerionenforschung, Grafik: MPI für Kernphysik


Abb.2: Abbildung der Kreisbewegung des Ions auf dem Detektor („Phasenuhr“) für verschiedene Stoppzeiten. Das Bild setzt sich aus einer großen Zahl von Einzelmessungen zusammen, die innerhalb weniger Minuten aufgenommen werden können. Die Umlaufzeit des Ions beträgt etwa 1 Mikrosekunde.
Grafik: MPI für Kernphysik

Präzisionsmessungen der Masse von Atomkernen haben in den letzten Jahren erheblich an Bedeutung für viele grundlegende Fragen der Physik gewonnen. Ein wichtiger Aspekt ist dabei die Bindungsenergie und damit verbunden die Stabilität der Kerne. Die Verbindung von Masse und Energie liefert Einsteins bekannte Formel E = m*c^2. Für einen Atomkern bedeutet dies, dass das Ganze weniger ist als die Summe seiner Teile: Der Kern hat eine etwas geringere Masse als die Summe der Massen seiner einzelnen Bestandteile, Protonen und Neutronen. Über die Bestimmung dieser Massendifferenz bekommt man also direkt die Bindungsenergie des Atomkerns, die von großer Bedeutung ist für beispielsweise Untersuchungen zur Entstehung der Elemente im Universum oder die Stabilität superschwere Elemente.

Eine besondere Herausforderung stellt die Massenmessung radioaktiver, also instabiler Nuklide dar, denn sie zerfallen oft kaum einen Wimpernschlag nach ihrer Erzeugung schon wieder. Untersuchen kann man sie daher nur an speziellen Beschleunigereinrichtungen, wo sie produziert werden. Und auch danach muss es entsprechend schnell gehen:

Eine etablierte Technik ist der Einfang und die Speicherung instabiler Nuklide in Form einzelner Ionen in so genannten Penningfallen, wie sie in der Gruppe um Klaus Blaum am Heidelberger MPI für Kernphysik betrieben werden. Hier kreist das Ion in einem starken Magnetfeld und wird zusätzlich durch eine positive Spannung an zwei gegenüberliegenden Elektroden am Entweichen in Richtung der Achse der Kreisbewegung gehindert (Abb. 1). Letztere ist durch die Zyklotronfrequenz eines geladenen Teilchens im Magnetfeld charakterisiert. Diese ist umgekehrt proportional zur Masse des Teilchens.

Zur Bestimmung der Frequenz bleibt bei kurzlebigen Nukliden wenig Zeit. Die Forscher verstärken daher zunächst mit einem elektrischen Hochfrequenzfeld die Kreisbewegung des Ions und lassen es dann durch Herunterschalten der Fallenspannung frei durch das Vakuum auf einen Detektor fliegen. Aus der Flugzeit lässt sich dann die Bewegungsenergie bestimmen. Der Verstärkungseffekt ist am größten, wenn die Hochfrequenz mit der Zyklotronfrequenz übereinstimmt, also Resonanz vorliegt. Die mit dieser bisher verwendeten Methode erzielte Genauigkeit liegt für Isotope mit wenigen 10-100 ms Halbwertszeit nun in der Größenordnung eines halben Umlaufs – vergleichbar mit dem Minutenzeiger einer Uhr, wenn ein Umlauf einer Minute entspricht. Genauere Uhren sind mit einem Sekundenzeiger ausgestattet. Diese Rolle übernimmt nun im Experiment das kreisende Ion selbst, man muss nur seine ‚Zeigerstellung‘ – die Physiker sprechen hier von der Phase der Kreisbewegung – abbilden.

Diese Idee haben nun die Heidelberger Physiker in Zusammenarbeit mit Kollegen der Universität Greifswald am GSI Helmholtzzentrum Darmstadt umgesetzt. Sie lassen das Ion nach Anregung durch einen Hochfrequenzpuls (Start) zunächst einige Zehntelsekunden kreisen und bilden es dann auf einen ortsempfindlichen Detektor ab (Stopp). Abb. 2 zeigt das ‚Zifferblatt‘ auf dem Detektor für verschiedene Stoppzeitpunkte. Auf diese Weise können auch kleine relative Massendifferenzen sichtbar gemacht werden. Wie bei zwei Uhren, die ein klein wenig unterschiedlich schnell gehen, vergrößert sich im Laufe der Zeit der Zeigerabstand (Phasenwinkel). Dies führt zu einer 40-fach besseren Auflösung und einer bis zu fünfmal höheren Genauigkeit – ein Durchbruch in der Präzisions-Massenspektrometrie. Mit der neuen Methode kann man daher Massen bei gleicher Genauigkeit 25 mal schneller messen. Zur Demonstration untersuchten die Forscher zwei Xenon-Isotope mit den Massenzahlen 129 und 130 mit der SHIPTRAP-Apparatur an GSI Helmholtzzentrum Darmstadt und erreichten innerhalb weniger Minuten relative Massengenauigkeiten auf die neunte Nachkommastelle.

Originalveröffentlichung:
Phase-Imaging Ion-Cyclotron-Resonance Measurements for Short-Lived Nuclides
S. Eliseev et al., Phys. Rev. Lett. 110, 082501 (2013)
Kontakt:
Prof. Dr. Klaus Blaum
Max-Planck-Institut für Kernphysik Heidelberg
Tel.: 06221 516-850
E-Mail: klaus.blaum@mpi-hd.mpg.de
Dr. Sergey Eliseev
Max-Planck-Institut für Kernphysik Heidelberg
Tel.: 06221 516-670
E-Mail: sergey.eliseev@mpi-hd.mpg.de
Prof. Dr. Lutz Schweikhard
Ernst-Moritz-Arndt Universität Greifswald
Tel.: 03834 86-4700/4750
E-Mail: lschweik@uni-greifswald.de
SHIPTRAP-Kollaborationssprecher Dr. Michael Block
GSI Helmholtzzentrum für Schwerionenforschung Darmstadt
Tel.: 06159 71-2845
E-Mail: m.block@gsi.de
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.110.082501
Originalveröffentlichung
http://www.mpi-hd.mpg.de/blaum/index.de.html
Abteilung Blaum am MPIK
http://www6.physik.uni-greifswald.de/
Arbeitsgruppe Atom- und Molekülphysik an der Universität Greifswald
https://www.gsi.de/start/forschung/forschungsfelder/appa_pni_gesundheit/
atomphysik/forschung/experimentieranlagen/shiptrap.htm
SHIPTRAP an der GSI

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences