TUM auf der AAAS-Jahrestagung: Beton mit Selbstheilungskräften

Wenn der Beton reißt, erzeugt dies Schallwellen, die mithilfe von Sensoren gemessen werden. Foto: Werner Bachmeier / TUM

Durch dauerhafte Belastung oder infolge von Temperaturschwankungen können im Beton kleine Risse entstehen. Zwar gefährden diese Risse die Stabilität der Bauwerke meist nicht unmittelbar, erklärt Prof. Christian Große vom Lehrstuhl für Zerstörungsfreie Prüfung an der TUM. „Aber es können Wasser und Salze in den Beton eindringen und das Bauteil schädigen.“

Drei Heilungsmechanismen

Reparaturen an den Bauwerken sind teuer und können lange Staus verursachen. Im EU-Projekt „HealCON“ forscht ein Team internationaler Wissenschaftler an einem Beton, der sich selbst heilen kann. Dabei untersuchen die Forscher drei unterschiedliche Heilungsmechanismen.

– Bakterien als Mini-Bauarbeiter

Bestimmte Bakterien scheiden als Produkt ihres Stoffwechsels Calciumcarbonat aus. Die Wissenschaftler tränken Tonkugeln mit den Sporen dieser Bakterien und mischen die Kugeln in den Beton. Sobald Wasser in den Beton eindringt, werden die Mikroorganismen aktiv und scheiden Calciumcarbonat aus, eines der Hauptbestandteile von Beton. „Die Bakterien können innerhalb weniger Tage auch Risse bis zu einigen Millimetern Breite verschließen“, sagt Große.

– Hydrogele als Lückenfüller

Hydrogele sind Polymere, die Feuchtigkeit aufsaugen. Sie werden unter anderem in Windeln eingesetzt. Material mit Hydrogelen kann bis zu dem 10-fachen oder sogar 100-fachen der originalen Größe anwachsen. Wenn Risse auftreten, kommt das Hydrogel mit Feuchtigkeit in Kontakt. Es dehnt sich aus und verhindert so weiteres Eindringen von Wasser, ohne den Riss zu verbreitern.

– Noch stärker durch Epoxidharz

Epoxidharze oder Polyurethane können in Kapseln eingeschlossen und dann unter den Beton gemischt werden. Wenn der Beton reißt, brechen die Kapseln, und das Polymer wird freigesetzt. Es bildet eine harte Masse, die den Riss schließt. Ein positiver Nebeneffekt: So wird die Stabilität der Bausubstanz gestärkt.

In den Beton hineinschauen

Zu beurteilen, wie gut diese Heilungsansätze im Einzelfall funktionieren, ist das Spezialgebiet von Große und seinen Mitarbeitern. Sie nutzen dazu zerstörungsfreie Testmethoden wie etwa die Schallemissionstechnik.

Dabei wird auf einen Betonblock, der eines der Heilmittel enthält, Druck ausgeübt. Wenn der Beton reißt, erzeugt dies Schallwellen, die mithilfe von Sensoren gemessen werden. Die Wissenschaftler können anhand der Daten nicht nur nachvollziehen, dass Risse entstanden sind, sondern auch an welcher Stelle.

Nach dem Heilungsprozess führen die Forscher das Experiment erneut durch. War die Heilung nicht erfolgreich, gibt es kaum neue Schallwellen, da die Risse nach wie vor vorhanden sind. Sind die Risse geheilt, kommt es wieder zu Brüchen – allerdings an anderer Stelle. „Die Lokalisierung der Rissgeräusche zeigt uns also sehr deutlich, ob ein Heilmittel funktioniert“, sagt Große.

Untersuchung am Bauteil mit Ultraschall

Die Schallemissionsanalyse ist gut für die Laboranwendung geeignet, für die Untersuchung von großen realen Bauteilen vor Ort setzen die Forscher eine andere Technik ein. „Hier verwenden wir kontinuierliche Ultraschall-Impulse“, erklärt Große.

Die Wissenschaftler messen dabei die Zeit, die die Ultraschall-Impulse benötigen, um den Beton zu durchlaufen. Risse im Material behindern das Signal, es benötigt mehr Zeit, um das Material zu durchdringen. Sind die Risse geschlossen worden, durchlaufen die Impulse das Material wieder schneller. Auch die Signalstärke lässt bei dem beschädigten Material merklich nach.

Unter Laborbedingungen zeigen die Experimente bereits vielversprechende Ergebnisse. Im nächsten Schritt werden die Wissenschaftler das selbstheilende Material bei realen Bauteilen (Brücken- oder Tunnelabschnitte) einsetzen. Im letzten Schritt müssen die Technologien dann an gängige Betonherstellungs- und Betoniermethoden angepasst werden.

Das Projekt HealCON wird im 7. Forschungsrahmenprogramm der Europäischen Union (FP7/2007-2013) unter der Fördernummer 309451 unterstützt. Die Projektkoordination hat die Universität Gent (Belgien) inne.

Kontakt:
Prof. Dr. Christian Große
Centrum Baustoffe und Materialprüfung
Lehrstuhl für Zerstörungsfreie Prüfung
Tel: + 49.89.289.27221
grosse@tum.de
http://www.zfp.tum.de/

https://aaas.confex.com/aaas/2016/webprogram/Session12203.html Session auf der Jahrestagung der AAAS
https://mediatum.ub.tum.de/?id=1291076#1291076 Bildmaterial zum Download
https://www.youtube.com/watch?v=rtlBe47k4DQ Selbstheilender Beton (Youtube)

Ansprechpartner für Medien

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Innovative Spritzgussformen aus dem 3D-Drucker

Die Hochschule Offenburg hat jetzt zusammen mit Partnern aus der Industrie das Forschungsprojekt „Entwicklung 3D-gedruckter Multi-Material Spritzgussformeinsätze“ gestartet. Ein Prototyp eines späteren Serienteils ließ sich bislang nur in einer eigens…

Blasenkrebs: Wann eine Chemotherapie sinnvoll ist

Immunstatus erlaubt Abschätzung des Therapieerfolgs Bei Patientinnen und Patienten mit Blasenkrebs trägt die körpereigene Bekämpfung des Tumors durch das Immunsystem zur Wirksamkeit einer Chemotherapie bei. Das berichtet ein Forschungsteam der…

Genorte für übermäßiges Schwitzen identifiziert

Erkenntnisse von Genetikern der Universität Trier könnten helfen, die sogenannte Primäre Hyperhidrose besser zu behandeln. Petra H. muss bei einem Vorstellungsgespräch Briefe nach Wichtigkeit sortieren. Dabei hinterlässt sie große nasse…

Partner & Förderer

Indem Sie die Website weiterhin nutzen, stimmen Sie der Verwendung von Cookies zu. mehr Informationen

Die Cookie-Einstellungen auf dieser Website sind so eingestellt, dass sie "Cookies zulassen", um Ihnen das bestmögliche Surferlebnis zu bieten. Wenn Sie diese Website weiterhin nutzen, ohne Ihre Cookie-Einstellungen zu ändern, oder wenn Sie unten auf "Akzeptieren" klicken, erklären Sie sich damit einverstanden.

schließen