Photovoltaik: Einfach integrierbar durch moderne Druckverfahren

Die aufgedruckten Streifen machen den Unterschied. Durch Reihenschaltung erzeugt jedes Quadrat aus zehn Streifen eine Spannung von ca. 8 Volt. Fraunhofer IAP

Erneuerbare Energien sind heutzutage aus der gesellschaftlichen Debatte nicht mehr wegzudenken. Moderne Drucktechniken versprechen eine einfache und kostengünstige Herstellung von Photovoltaikelementen, und das über Anwendungen in der Architektur hinaus.

Das Fraunhofer IAP präsentiert auf der LOPEC 2018 seine Kompetenz, insbesondere in der Inkjet-Drucktechnik. Damit lassen sich beispielweise größere Fassadenelemente zur Erzeugung von Solarenergie drucken. Weitere Einsatzgebiete finden sich in der Optoelektronik und in der Medizin. Auch für textile Anwendungen können die Druckspezialisten das Verfahren einsetzen.

Neben einem Fassadenelement zeigen die Forscher eine Jacke, die genug Energie erzeugt, um Handwärmer und Handy-Ladegerät zu betreiben. Die erzeugte Energie kann in dem Kleidungsstück selbst gespeichert werden. Aktuell entwickeln die IAP-Forscher gemeinsam mit Industriepartnern eine solarbetriebene LED-beleuchtete Fahrradjacke.

Hergestellt werden die gedruckten Elemente auf der institutseigenen Pilotanalage für gedruckte Elektronik. »Auf unserer Pilotanlage werden die Druckprozesse im industrienahen Maßstab entwickelt, die wir dann mit Maschinenbauern in die Anlagen von Kunden überführen. Unsere Druckverfahren optimieren wir stetig und passen sie individuell an die jeweiligen Anforderungen an«, erklärt Dr. Armin Wedel, Leiter des Forschungsbereichs Funktionale Polymersysteme am Fraunhofer IAP.

Für kleine Flächen arbeiten die Fraunhofer-Forscher an einem neuartigen Drop-on-Demand System, dem Esjet-Druck (electro-static printing). Die Technik erlaubt eine größere Bandbreite an Tinten, die für den Druck besonders feiner Strukturen essenziell sind. Insbesondere das Viskositätsspektrum der eingesetzten Tinten kann im Vergleich zum Inkjet-Druck deutlich erweitert werden. Dies eröffnet neue Perspektiven für den Druck von feinen Metallgrids mit hoher Transmission, die in der Photovoltaik als Ersatz der bisher üblichen transparenten ITO-Elektroden eingesetzt werden können.

Das Fraunhofer IAP in der German OLED Technology Alliance, GOTA

Auf der LOPEC präsentieren die Forscher auch erste Kundenprojekte der GOTA Alliance. In enger Zusammenarbeit mit den Maschinenherstellern MBraun Inertgas-Systeme GmbH in München, Notion GmbH in Schwetzingen und der ARDENNE GmbH in Dresden, entwickelt das Fraunhofer IAP Prozesse und Materialien für zukünftige OLED-Produktionsanlagen. Die vier Partner haben sich zur OLED Technology Alliance GOTA zusammengeschlossen, um auf dem Markt komplette OLED-Produktionsanlagen anzubieten.

Das Fraunhofer IAP ist seit über 25 Jahren in der organischen elektronischen Forschung tätig und konzentriert sich auf lösungsverarbeitete Devices mit Anwendungen in OLEDs, QLEDs, OTFT, OPV, Perowskit-Solarzellen, Sensoren und Aktoren. In einem großen Reinraum stehen mehrere Verarbeitungstechniken zur Verfügung, vom Spin Coating zur Materialevaluation in Laborgeräten bis hin zu fortgeschrittenen Verarbeitungstechniken wie dem Inkjet-Druck und dem High-precision-slot-die-coating auf einer robotergesteuerten S2S-Fertigungspilotlinie für Größen bis zu 150 mm x 150 mm einschließlich unterschiedlicher Verdampfungs- und Verkapselungstechniken.

https://www.iap.fraunhofer.de/de/Forschungsbereiche/Funktionale_Polymersysteme/f…

Media Contact

Dr. Sandra Mehlhase Fraunhofer-Institut für Angewandte Polymerforschung IAP

Alle Nachrichten aus der Kategorie: Messenachrichten

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Flexible Elektronik ohne Sintern

Leitfähige Metall-Polymer-Tinten für den Inkjet-Druck. Auf der diesjährigen Hannover Messe präsentiert das INM – Leibniz-Institut für Neue Materialien Hybridtinten für den Inkjetdruck. Sie bestehen aus Metallnanopartikeln, die mit leitfähigen Polymeren…

Grüner Wasserstoff nach dem Vorbild der Natur

Transregio-Sonderforschungsbereich verlängert … Das Sonnenlicht als Quelle für die klimafreundliche Energieversorgung nutzen: Lange vor großen Initiativen wie dem europäischen „Green Deal“ oder der „nationalen Wasserstoffstrategie“ hat der Transregio-Sonderforschungsbereich (SFB) CataLight…

Molekulare heterogene Katalyse in definierten dirigierenden Geometrien

Katalyse-Sonderforschungsbereich geht in die zweite Runde. Der Sonderforschungsbereich „Molekulare heterogene Katalyse in definierten dirigierenden Geometrien“ (SFB 1333) an der Universität Stuttgart erhält eine zweite Förderperiode und damit Fördermittel in Höhe…

Partner & Förderer