Neues Laserverfahren modelliert Glasfasern nach Maß

Dank des neuartigen Laserverfahrens können Glasfasern künftig in noch kleinere Venenzweige vordringen © Fraunhofer IZM

Venenerkrankungen sind hierzulande nahezu eine Volkskrankheit geworden: Jede fünfte Frau und jeder sechste Mann hat nach Angaben der Deutschen Venenliga Probleme mit Krampfadern, Thrombosen und anderen Venenbeschwerden.

Eine Venenverödung kann Abhilfe schaffen: Dazu wird eine Glasfaser mit etwa einem halben Millimeter Durchmesser in die betroffene Ader eingeschoben. Die Faser ist mit Kunststoff ummantelt und führt in ihrem Innern Laserlicht. Dieses ist in der Lage, das Gewebe zu veröden: Das Licht tritt aus der Faserspitze aus, es entsteht eine Temperatur von mehreren hundert Grad – die Vene verschließt sich.

Damit das Licht nicht frontal, sondern seitlich direkt auf die Venenwand auftreffen kann, läuft die Faser an ihrem Ende spitz zu. So bilden die Kegelwände Reflexionsflächen. Eine Schutzkappe aus Glas sorgt dafür, dass sich direkt auf der Spitze kein Blut ablagert. Das könnte die optischen Eigenschaften des Laserlichts verändern. Zudem beugt die Kappe Verletzungen des Patienten durch die Faserspitze vor.

Forscher des Fraunhofer-Instituts für Zuverlässigkeit und Mikrointegration IZM entwickelten im Projekt »LaserDELight« ein neuartiges, laserbasiertes Verfahren, um solche Glasfasern exakt zu modellieren. Hierzu nutzen sie den FiberTurningLaser, einen Laser zur Glasbearbeitung.

»Die Methode erlaubt erstmals eine automatisierte Herstellung im Serienmaßstab«, erklärt Dr. Henning Schröder vom IZM. Bislang werden die Fasern aufwändig mechanisch und manuell gefertigt. Das dauert nicht nur wesentlich länger, sondern ist auch kostenintensiver.

»Darüber hinaus erreicht man so nur schwer eine produkttaugliche Reproduzierbarkeit«, sagt Schröder. Die Automatisierung stellt dagegen eine gleichbleibende Qualität sicher. Das Projekt wird vom Bundesministerium für Bildung und Forschung gefördert.

Faserspitze befindet sich in der Sonde

Durch einen Laserstrahl bringen die Forscher das Glasfaserende in Form. In einem weiteren Produktionsschritt wird die Schutzkappe aufgesetzt und mit der Faser verschmolzen, ohne dass weitere Ausstattung erforderlich ist.

»Bei dem neuen Verfahren erwies es sich als praktikabler, die Faserspitze nicht mehr wie bei einem Bleistift spitz nach außen zulaufend, sondern als kegelförmige Einbuchtung in die Faser hinein zu modellieren«, erläutert Schröder. Dies bietet einen weiteren Vorteil: Die Kappe am Ende der Faser wird kleiner, da der spitze Kegel wegfällt. Damit wird der Fasersondenkopf insgesamt kompakter und beweglicher. Er kann in noch winzigere Venenverästelungen vordringen.

Mit Hilfe der Lasertechnologie wollen die Wissenschaftler zudem noch feinere Dimensionen erreichen, die sich per Hand nicht mehr bearbeiten lassen: Das Ziel sind Glasfasern mit einem Durchmesser von nur noch 100-200 Mikrometern. Diese könnten auch im Bereich der optischen Sensorik neue Anwendungen eröffnen, etwa als Kleinstoptik für die visible light communication – eine Technologie zur optischen Datenübertragung.

In diesem Fall würde der Prozess vereinfacht gesagt umgekehrt laufen: »Die Faserspitze nimmt dann Dateninformationen aus der Umgebung auf und schickt sie durch die Faser an einen Detektor«, erklärt Schröder. Dieser Detektor – etwa eine Fotodiode oder ein CMOS-Chip – wandelt die optischen in auswertbare elektrische Signale. Den Prototyp einer Fasersonde stellen Schröder und seine Kollegen vom IZM vom 19. bis 21. Mai in Nürnberg auf der Messe SENSOR+TEST (Halle 12, Stand 537) vor.

http://www.fraunhofer.de/de/presse/presseinformationen/2015/mai/neues-laserverfa… Per Klick auf diesen Link gelangen Sie zum Ansprechpartner

Media Contact

Georg Weigelt Fraunhofer Institute for Reliability and Microintegration IZM

Alle Nachrichten aus der Kategorie: Messenachrichten

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues Forschungsprojekt soll Immunzellen schlauer als den Krebs machen

Krebszellen können sich ständig verändern und sich auf diese Weise dem Immunsystem entziehen. Prof. Dr. Michael Hölzel vom Institut für Experimentelle Onkologie der Universität Bonn entwickelt eine Immuntherapie gegen schwarzen…

Mini-Stromgenerator aus Quantenpunkten

Mickael L. Perrin will winzige Kraftwerke aus Graphen-Nanobändern bauen, die aus Wärme Strom erzeugen. Für sein ehrgeiziges Projekt erhielt er nun einen der prestigeträchtigen «ERC Starting Grants» der EU sowie…

Bändigung eines Formwandler-Moleküls

Reduzierung der Formenvielfalt bei einem fluktuierenden Koordinationskäfigs. Manche Moleküle haben keine feste Form, sie sind in ständiger Bewegung, weil sich die Kohlenstoffbindungen, die sie zusammenhalten, ständig öffnen und in neuer…

Partner & Förderer