Lernfähige Objekterkennung und Umgebungserfassung für Serviceroboter

Objekterkennung in Position und Orientierung<br>© Fraunhofer IPA<br>

Vision 2012 in Stuttgart: Fraunhofer IPA präsentiert innovative Lösungen für die 3D-Bildverarbeitung

Ein Lager- oder Handlingroboter ordnet verschiedenartige, chaotisch angelieferte Teile, ohne dass diese vorher aufwändig einprogrammiert werden müssen. Ein Assistenzroboter für alleinstehende Senioren hält selbsttätig Haushaltsgegenstände und Wohnungsräume auseinander und kann intuitiv neue Objekte erlernen.
Ein Reinigungsroboter im Großbüro erkennt eigenständig stärker genutzte und verschmutzte Flächen und reinigt sie gezielt: Mit neuartigen Systemen für die dreidimensionale Objekterkennung und Umgebungserfassung, die am Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA entwickelt wurden, können Roboter auch solche komplexen Aufgaben meistern. Die Stuttgarter Servicerobotik-Spezialisten präsentieren ihre Lösungen mit praktischen Demonstrationen auf der Vision 2012 und zeigen weitere Anwendungsmöglichkeiten – zum Beispiel für die Personenerkennung und -identifizierung oder für die kostengünstige Lokalisierung von mobilen Robotern auf
Basis einfacher Farbkameras.

Präzision und Schnelligkeit bei gleichzeitig größtmöglicher Flexibilität und einfacher Benutzbarkeit für den Endanwender sind entscheidende Kriterien für die Praxistauglichkeit von 3D-Bildverarbeitungslösungen. Ein wesentliches Merkmal der am Fraunhofer IPA entwickelten Algorithmen ist daher die gezielte Filterung und Reduktion der Sensordaten, um markante Punkte vorrangig zu identifizieren und Objekte platzsparend und kompakt darzustellen. »Der Roboter scannt seine Umgebung in 3D mit einer Kombination aus Farb- und Tiefenkamera, die eine farbige Punktewolke mit exakt zugeordneten Abstandswerten erzeugt«, erläutert Projektleiter Georg Arbeiter. Aus der Punktewolke wird eine Geometriekarte gewonnen, in der signifikante Merkmale und geometrische Basisformen genutzt werden, um Objekte von Interesse schnell und sicher zu identifizieren und sich in der Umgebung zu orientieren. Das funktioniert praktisch in Echtzeit und ermöglicht sowohl kollisionsfreie Navigation als auch sinnvolle Fernsteuerung durch einen menschlichen Bediener, der die übermittelten Daten schneller verstehen kann.

Auch die Erkennung und Klassifizierung von Objekten läuft schnell und sicher über die gezielte Suche nach markanten Punkten wie Linienschnitten oder Ecken, die zu einem Modell zusammengesetzt und gespeichert werden. »Auf diese Weise können Objekte auch bei wechselnden Lichtverhältnissen und sogar bei partieller Verdeckung oder Deformation noch sicher erkannt werden«, hebt der für die Objektklassifizierung zuständige wissenschaftliche Mitarbeiter, Richard Bormann, hervor. Um Objekte wiederzufinden, sucht der Roboter markante Punkte und schließt aus ihrer Anordnung im Raum auf die Lage des Objekts.

Das 3D-Objekterkennungssystem für Serviceroboter kann aber noch mehr – es vermag aus der Kombination geometrischer Basisformen auch auf die Klasse oder Kategorie des Objekts zu schließen. Der Roboter »weiß«, dass beispielsweise ein Tisch aus einer horizontalen Platte auf vier senkrechten Zylindern, den Tischbeinen, besteht, dass die Flasche darauf ein langer Zylinder, die Milchtüte ein Hochkantquader und die Schüssel eine Halbkugel ist. Dank dieser Kombination aus Objekterkennung und Klassifikation kann der Roboter eigenständig neue Objekte »erlernen« oder intuitiv auf sie trainiert werden, und er kann diese Objekte auch in veränderlichen Umgebungen wiedererkennen – und das in Zeiten von weniger als einer Sekunde. »Die lernfähige Objekterkennung und Umgebungserfassung in 3D kann als Schlüsseltechnologie für die Entwicklung fortschrittlicher Assistenzroboter nicht nur alleinlebenden älteren Menschen eine höhere Lebensqualität ermöglichen«, betont Georg Arbeiter.

Weitere Einsatzmöglichkeiten für ihr System sehen die Fraunhofer-Ingenieure bei Fahrerassistenzsystemen, die z. B. in der Bewegung andere Fahrzeuge oder Straßenrand bebauung erkennen müssen oder auch in der industriellen Verwendung für autonome fahrerlose Transportsysteme oder Handhabungs-, Lager- und Sortieraufgaben. »Das Einlernen neuer Objekte dauert nur wenige Minuten und ist auch für Laien problemlos durchführbar«, so Richard Bormann. Damit eröffnet sich beispielsweise eine völlig neue Dimension der Flexibilität in der automatisierten Kleinserienfertigung.

Weitere Ansprechpartner
Dipl.-Ing. Georg Arbeiter
Telefon +49 711 970-1299 | georg.arbeiter@ipa.fraunhofer.de

Richard Bormann M. Sc.
Telefon +49 711 970-1062 | richard.bormann@ipa.fraunhofer.de

Ansprechpartner für Medien

Jörg Walz Fraunhofer-Institut

Weitere Informationen:

http://www.ipa.fraunhofer.de

Alle Nachrichten aus der Kategorie: Messenachrichten

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Mikroschwimmer lernen effizientes Schwimmen von Luftblasen

Forscher am Max-Planck-Institut für Dynamik und Selbstorganisation zeigen, dass das Geheimnis des optimalen Mikroschwimmens in der Natur liegt: Ein effizienter Mikroschwimmer kann seine Schwimmtechniken von einem unerwarteten Mentor erlernen: einer…

Neue antimikrobielle Polymere als Alternative zu Antibiotika

Neue Emmy Noether-Gruppe der Universität Potsdam forscht gemeinsam mit Fraunhofer IAP Am 1. Januar 2021 nahm die neue Emmy Noether-Gruppe »Antimikrobielle Polymere der nächsten Generation« an der Universität Potsdam in…

Besser gebündelt: Neues Prinzip zur Erzeugung von Röntgenstrahlung

Göttinger Physiker entwickeln Methode, bei der Strahlen durch „Sandwichstruktur“ simultan erzeugt und geleitet werden. Röntgenstrahlung ist meist ungerichtet und schwer zu leiten. Röntgenphysiker der Universität Göttingen haben eine neue Methode…

Partner & Förderer

Indem Sie die Website weiterhin nutzen, stimmen Sie der Verwendung von Cookies zu. mehr Informationen

Die Cookie-Einstellungen auf dieser Website sind so eingestellt, dass sie "Cookies zulassen", um Ihnen das bestmögliche Surferlebnis zu bieten. Wenn Sie diese Website weiterhin nutzen, ohne Ihre Cookie-Einstellungen zu ändern, oder wenn Sie unten auf "Akzeptieren" klicken, erklären Sie sich damit einverstanden.

schließen