Mit Fraunhofer schneller zum Medikament

Arzneien zu entwickeln, ist langwierig, aufwändig und teuer: Bis ein neuer Wirkstoff dem Patienten zur Verfügung steht, vergehen etwa 12 Jahre. Von 10 000 untersuchten Substanzen erhält im Schnitt nur eine die Zulassung als Medikament. Viele Projekte werden häufig erst nach jahrelanger Entwicklung abgebrochen – wegen nicht ausreichender Wirksamkeit oder inakzeptabler Nebenwirkungen der Präparate.

So steigen die Entwicklungskosten für ein Arzneimittel schnell auf 500 bis 800 Millionen Euro. „Heute ist es viel schwieriger und kostspieliger, ein Medikament auf den Markt zu bringen als noch vor zehn Jahren“, erklärt Prof. Dr. Uwe Heinrich, der Vorsitzende des Fraunhofer-Verbunds Life Sciences. Fraunhofer-Forscher unterstützen die Industrie beim gesamten Prozess der beschleunigten Medikamentenentwicklung – von der Zielstruktur- und Wirkstofffindung über die Überprüfung der Substanzen auf Nebenwirkungen bis zu den klinischen Studien der Phasen I und II.

Die Entwicklung eines neuen Arzneimittels beginnt mit der Suche nach einem Angriffspunkt im Krankheitsgeschehen, an dem ein Medikament ansetzen könnte. Diese Zielstrukturen, auch Targets genannt, sind meist Enzyme, Rezeptoren und andere Eiweiße. Genetiker und Molekularbiologen haben tausende krankheitsrelevante Gene und Proteine identifiziert. Doch welches dieser unzähligen Zielmoleküle könnte ein geeigneter Kandidat für eine Medikamentenent- wicklung sein? Um diese Frage zu beantworten, müssen die Wechselwirkungen eines möglichen Targets mit anderen Genen und Proteinen genau untersucht werden. Erst dann sind die Investitionen für eine Arzneimittelentwicklung und -zulassung zu rechtfertigen. Für die Target-Validierung haben Forscher des Fraunhofer-Instituts für Biomedizinische Technik IBMT eine zell-basierte In-vitro-Testplattform entwickelt.

„Es können sogar dreidimensionale Gewebemodelle zerstörungsfrei über mehrere Wochen untersucht und Therapiemöglichkeiten getestet werden“, erläutert Dr. Hagen Thielecke vom IBMT. So haben die Forscher Testsysteme für Herzmuskelzellen, glatte Muskelzellen und Gefäßendothelzellen aufgebaut. Damit lassen sich mögliche Ansatzpunkte für die Behandlung von Herz-Kreislauferkrankungen erforschen. Gegenwärtig wird das System aber auch eingesetzt, um verschiedene Stammzelltypen auf ihre Knochenzellbildungsfähigkeit hin zu charakterisieren oder um Gentherapieansätze zu untersuchen.

Im nächsten Schritt suchen die Forscher geeignete Wirkstoffe. Die Wissenschaftler beginnen mit mehr als 10 000 Substanzen. Mit automatischen Testsystemen werden die Kandidaten herausgefiltert, die eine Wirkung auf bestimmte Krankheitsprozesse zeigen. Forscher des Fraunhofer-Instituts für Grenzflächen und Bioverfahrenstechnik IGB nutzen zellbasierte Assays, um Wirkstoffe zu identifizieren, die validierte Targets blockieren.

„Hierbei werden mehrere 10 000 Substanzen in Gegenwart von menschlichen Zellkulturen mit einem je nach Target entworfenen Reporterassay zusammengebracht“, erläutert Dr. Steffen Rupp. Ob eine Substanz eine Wirkung hat, lässt sich nachweisen, indem – je nach Versuchsanordnung – gezielt ein fluoreszierendes Protein an- oder abgeschaltet wird. Mit Hilfe der eingesetzten menschlichen Zellen überprüfen die Forscher gleichzeitig, ob der Wirkstoff generell eine zytotoxische Wirkung hat.

Übrig bleiben schließlich etwa 100 Substanzen. Um aus diesen Wirkstoffkandidaten schneller geeignete Stoffe für die Medikamentenentwicklung herauszufiltern, müssen die Forscher frühzeitig abschätzen können, welche Wirkung und Toxizität eine neue Substanz hat. Forscher des Fraunhofer-Instituts für Toxikologie und Experimentelle Medizin ITEM setzen hierfür die Gen- und Proteinexpressionsanalyse ein. Damit prüfen sie, wie eine Substanz die Genaktivität verändert und können so Rückschlüsse auf mögliche Nebenwirkungen ziehen. Zunächst werden die Genexpressionsprofile der neuen Wirkstoffkandidaten mit denen von Stoffen verglichen, deren schädigende Wirkungen bereits bekannt sind. Zeigt ein neu erforschter Wirkstoff eine ähnliche Signatur wie zum Beispiel ein Medikament, das Leberschäden verursacht, hat diese Substanz vermutlich die gleiche Nebenwirkung. Wichtige Hinweise auf toxische Eigenschaften geben aber vor allem Tests an Zell- und Organstrukturen.

Doch wie wird der neue Wirkstoff vom Körper aufgenommen, verteilt und umgewandelt? Entstehen toxische Abbauprodukte, die zu unerwünschten Nebenwirkungen führen können? Antworten auf diese Fragen können Untersuchungen an dreidimensionalen Gewebesystemen geben, die Wissenschaftler des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB entwickelt haben. Ihnen ist es gelungen, menschliches Gewebe unterschiedlicher Organe wie Haut, Leber und Darm herzustellen. Die Besonderheit: Das „künstliche“ Gewebe ist sogar mit Blutgefäßen versorgt. Das ermöglicht aussagekräftige Tests über die Wirkung von Medikamenten. Diese Untersuchungen ergänzen Tierversuche. In Tests an Tieren zeigt sich, wie die Substanzen in einem komplexen Organismus wirken und ab welcher Dosis diese Stoffe giftig sind.

Ist ein aussichtsreicher Wirkstoffkandidat gefunden, muss er in kleinen Mengen für klinische Tests nach GMP-Richtlinien – Good Manufacturing Pratice – hergestellt werden. Die Fraunhofer-Institute für Molekularbiologie und Angewandte Oekologie IME und für Zelltherapie und Immunologie IZI können unter anderem therapeutische, rekombinante Proteine unter GMP-Bedingungen produzieren. Das IZI verfügt über Produktionskapazitäten für die GMP-gerechte Herstellung von Zelltherapeutika und Testsystemen. Es wurden neue Technologien etabliert, um etwa Therapeutika gegen Krebs zu untersuchen. In diesem Modellsystem lässt sich die Verteilung von neuartigen Wirkstoffen im Organismus gezielt untersuchen. Das IGB verfügt über Produktionskapazitäten für die GMP-gerechte Herstellung von Zellsystemen für den Organersatz.

Bevor ein neues Medikament für die Behandlung zugelassen wird, muss seine Wirksamkeit und Sicherheit in klinischen Studien belegt sein. Das ITEM führt in Zusammenarbeit mit der Medizinischen Hochschule Hannover klinische Studien nach international standardisierten Richtlinien der Good Clinical Practice („gute klinische Praxis“) durch. Die ITEM-Forscher sind auf klinische Studien für die Zulassung von Medikamenten bei Atemwegserkrankungen wie Asthma, chronische Bronchitis und Heuschnupfen spezialisiert. Erst wenn ein Wirkstoff diese klinischen Tests bestanden hat, wird er als Medikament zugelassen.

Der Weg vom chemischen Molekül bis zum Medikament in der Apotheke ist lang – neue Forschungsergebnisse und Technologien helfen, ihn sicherer und kürzer zu machen.

Das Thema „Beschleunigte Medikamentenentwicklung“ stellen Fraunhofer-Forscher in Halle 9, Stand E29 vor. Journalisten bieten wir individuelle Rundgänge über den Fraunhofer-Stand an. Termine können Sie vereinbaren mit
Dr. Claus-Dieter Kroggel
Telefon: 05 11 / 53 50-1 03
claus.kroggel@vls.fraunhofer.de
Im Verbund Life-Sciences sind folgende Institute aktiv:
Fraunhofer-Institut für Biomedizinische Technik, IBMT
Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik, IGB
Fraunhofer-Institut für Molekularbiologie und Angewandte
Oekologie, IME
Fraunhofer-Institut für Toxikologie und Experimentelle Medizin, ITEM
Fraunhofer-Institut für Zelltherapie und Immunologie, IZI

Media Contact

Dr. Janine Drexler Fraunhofer-Gesellschaft

Alle Nachrichten aus der Kategorie: Messenachrichten

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Erstmals 6G-Mobilfunk in Alpen getestet

Forschende der Universität Stuttgart erzielen leistungsstärkste Verbindung. Notrufe selbst in entlegenen Gegenden absetzen und dabei hohe Datenmengen in Echtzeit übertragen? Das soll möglich werden mit der sechsten Mobilfunkgeneration – kurz…

Neues Sensornetzwerk registriert ungewöhnliches Schwarmbeben im Vogtland

Das soeben fertig installierte Überwachungsnetz aus seismischen Sensoren in Bohrlöchern zeichnete Tausende Erdbebensignale auf – ein einzigartiger Datensatz zur Erforschung der Ursache von Schwarmbeben. Seit dem 20. März registriert ein…

Bestandsmanagement optimieren

Crateflow ermöglicht präzise KI-basierte Nachfrageprognosen. Eine zentrale Herausforderung für Unternehmen liegt darin, Über- und Unterbestände zu kontrollieren und Lieferketten störungsresistent zu gestalten. Dabei helfen Nachfrage-Prognosen, die Faktoren wie Lagerbestände, Bestellmengen,…

Partner & Förderer