EU-Projekt ExtreMat präsentiert Materialien für extreme Belastungen auf Hannover Messe 2008

Unter Leitung des Max-Planck-Instituts für Plasmaphysik (IPP) in Garching arbeitet ein europäisches Forschungs- und Industriekonsortium daran, innovative Höchstleistungsmaterialien zu entwickeln – zum Beispiel Werkstoffe, die extreme Wärmemengen abführen können, oder ultradünne Schutzschichten, die auch bei hoher Temperatur für schädigende Stoffe undurchlässig bleiben.

Sie sollen neue Anwendungsbereiche in Energietechnik, Elektronik und Raumfahrt erschließen. Beispiele hierfür präsentiert ExtreMat auf der diesjährigen Hannover Messe.

Unter Leitung des IPP sind an dem Projekt „ExtreMat“ 37 Partner aus ganz Europa beteiligt, die alle Arbeitsfelder von der Grundlagen- über die anwendungsnahe Forschung bis hin zur industriellen Entwicklung abdecken. Durch diese Arbeit über Branchengrenzen hinweg werden Lösungen möglich, die sonst nicht erreichbar wären. Dabei sollen nicht nur neue Materialien entwickelt, sondern auch ihre industrielle Anwendbarkeit sichergestellt werden.

Dazu gehören Werkstoffe, die hohe Wärmeflüsse abführen können – zum Beispiel für kompakte Höchstleistungshalbleiter oder für Wärmetauscher in Kraftwerken. Ebenso werden strahlungsresistente Materialien für die Energietechnik entwickelt sowie neuartige Beschichtungen, wie sie zum Schutz von Hochleistungsturbinen vor der zerstörenden Wirkung heißer Brenngase, in der Fusionsforschung zum Schutz des Plasmagefäßes vor dem heißen Plasma, in der chemischen Industrie und für die Raumfahrt benötigt werden.

Das über fünf Jahre laufende Projekt hat 2004 begonnen und verfügt über ein Kostenvolumen von rund 35 Mio. Euro, wovon 17,4 Mio. Euro von der EU übernommen werden. Drei Jahre nach dem Start kann ExtreMat bereits erfolgreiche Entwicklungen vorweisen:

Ein Meilenstein beim Hitzeschutz wurde zum Beispiel mit porösem Siliziumkarbid erreicht. Wird das keramische Material lagenweise angeordnet, sinkt seine Wärmeleitfähigkeit erheblich und es wird zäher, da die Rissbildung behindert wird. Schockartige Wärmelasten bis zu 380 Megawatt pro Quadratmeter wurden schadlos bewältigt, ebenso 100 Durchgänge für den simulierten Wiedereintritt eines Raumfahrzeugs in die Erdatmosphäre.

Zudem schützt sich das Material selbsttätig gegen Oxidation: Bei hoher Temperatur der Luft ausgesetzt, bildet sich eine dünne Schutzschicht aus Siliziumdioxid, die weitere Oxidation verhindert. Damit das Material auch zum Hitzeschutz von Turbinen nutzbar wird, muss es zusätzlich aggressivem Wasserdampf gewachsen sein. Dafür sorgt eine passivierende Beschichtung auf Basis seltener Erden. Mit den so erreichten Eigenschaften sind diese neuartigen Keramiken eine wirtschaftlich attraktive Alternative zu bisher genutzten Materialien.

Ein weiteres Beispiel für gelungene Materialentwicklung sind Wärmesenken: In der Elektronik kommt die Kompaktierbarkeit von elektronischen Bauteilen und Computern dann an ihre Grenze, wenn die erzeugte Wärme nicht mehr gut genug abgeführt werden kann. Auch bei Wärmetauschern, Triebwerken, Bremssystemen oder in künftigen Fusionskraftwerken ist gute Wärmeabfuhr gefragt: Wo Wärmelasten bis zu 20 Megawatt pro Quadratmeter abzutransportieren sind, muss das Material eine extrem hohe Wärmeleitfähigkeit besitzen und widerstandsfähig sein gegen raschen Temperaturwechsel und thermo-mechanische Belastung.

Zwei Materialklassen hat ExtreMat dazu optimiert: Metall-Matrix-Komposite mit hochleitfähigen Bestandteilen wie Diamant oder Kohlefasern für elektronische Anwendungen sowie – für den Einsatz in Kraftwerken und Motoren – mit Fasern oder Nanopartikeln verstärkte Kupferlegierungen. Insbesondere wurden industrielle Fertigungsmethoden für die Verstärkung von Kupfer durch keramische Fasern wie Siliziumkarbid entwickelt (siehe Abbildung). Dabei entscheiden die Grenzflächeneigenschaften zwischen der Faserverstärkung und der metallischen Matrix über die mechanischen Eigenschaften des Verbundmaterials.

In der nächsten Projektphase wird es darum gehen, die Leistungsfähigkeit der entwickelten Materialien gründlich zu testen. Auch die Verbindung der Materialien mit verschiedenen Trägerstrukturen soll Härtetests unterworfen werden. Experimente haben bereits begonnen, die Werkstoffe unter Einsatzbedingungen in elektronischen Schaltungen, leistungs- und opto-elektronischen Geräten sowie in Fusionsanlagen zu prüfen.

Den ExtreMat-Gemeinschaftsstand finden Sie auf der Hannover Messe in Halle 2, Stand C 08.

Ansprechpartner für Medien

Isabella Milch idw

Weitere Informationen:

http://www.ipp.mpg.de

Alle Nachrichten aus der Kategorie: HANNOVER MESSE

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Herz-Kreislauf-Erkrankungen: Neues Computermodell verbessert Therapie

Mithilfe mathematischer Bildverarbeitung haben Wissenschafter der Forschungskooperation BioTechMed-Graz einen Weg gefunden, digitale Zwillinge von menschlichen Herzen zu erstellen. Die Methode eröffnet völlig neue Möglichkeiten in der klinischen Diagnostik. Obwohl die…

Teamarbeit im Molekül

Chemiker der Universität Jena erschließen Synergieeffekt von Gallium. Sie haben eine Verbindung hergestellt, die durch zwei Gallium-Atome in der Lage ist, die Bindung zwischen Fluor und Kohlenstoff zu spalten. Gemeinsam…

Kristallstrukturen in Super-Zeitlupe

Göttinger Physiker filmen Phasenübergang mit extrem hoher Auflösung Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern. Dieses Prinzip ermöglicht heute weitverbreitete Technologien wie die wiederbeschreibbare DVD….

Partner & Förderer

Indem Sie die Website weiterhin nutzen, stimmen Sie der Verwendung von Cookies zu. mehr Informationen

Die Cookie-Einstellungen auf dieser Website sind so eingestellt, dass sie "Cookies zulassen", um Ihnen das bestmögliche Surferlebnis zu bieten. Wenn Sie diese Website weiterhin nutzen, ohne Ihre Cookie-Einstellungen zu ändern, oder wenn Sie unten auf "Akzeptieren" klicken, erklären Sie sich damit einverstanden.

schließen