Walter Metzner erhält Europhysik-Preis 2006

Prof. Walter Metzner, Direktor am Max-Planck-Institut für Festkörperforschung, ist einer der vier Preisträger, die am 29. März 2006 von der European Physical Society mit dem Europhysics Prize ausgezeichnet werden. Bild: Max-Planck-Institut für Festkörperforschung

Vier Wissenschaftler für Entwicklung und Anwendung der „Dynamischen Molekularfeldtheorie“ mit dem Europhysics Prize 2006 ausgezeichnet

Am 29. März 2006 verleiht die European Physical Society auf ihrer Jahrestagung in Dresden den Europhysics Prize 2006. Die Preisträger sind: Walter Metzner vom Stuttgarter Max-Planck-Institut für Festkörperforschung, Antoine Georges von der Ecole Polytechnique in Palaiseau, Frankreich, Gabriel Kotliar von der Rutgers University, USA, und Dieter Vollhardt von der Universität Augsburg. Der mit 51.000 Schweizer Franken dotierte Preis wird von dem Messtechnik-Unternehmen Agilent Technologies gestiftet und würdigt herausragende Leistungen auf dem Gebiet der Physik kondensierter Materie (Festkörper und Flüssigkeiten). Die vier Physiker werden für die Entwicklung und Anwendung der Dynamischen Molekularfeldtheorie geehrt, mit der ungewöhnliche Eigenschaften von Materialien mit „korrelierten Elektronen“ erklärt und berechnet werden können. Der Europhysics Prize ist einer der wichtigsten europäischen Physik-Preise – acht seiner bisherigen Preisträger wurden später mit dem Nobelpreis ausgezeichnet.

Technischer Fortschritt ist eng mit der Entwicklung und Erforschung neuer Materialien verbunden. Neben experimentellen Untersuchungen spielen hierbei auch Berechnungen von Materialeigenschaften eine zentrale Rolle. Ohne theoretisches Verständnis der komplexen Vorgänge im Inneren der Materie verliert sich der Materialforscher schnell im Labyrinth der praktisch unbegrenzten chemischen Kombinationsmöglichkeiten.

Die physikalischen Prinzipien, die hinter der Vielfalt von Materialien und ihren Eigenschaften stehen, sind lange bekannt. Die Lösung der entsprechenden quantenmechanischen Gleichungen ist jedoch äußerst schwierig. Selbst eine kleine Probe enthält eine gewaltige Anzahl von Teilchen, die alle miteinander in Wechselwirkung stehen. Elektronen stoßen sich zum Beispiel aufgrund der Coulomb-Wechselwirkung voneinander ab. Da man die Bewegung der einzelnen Teilchen unmöglich exakt berechnen kann, ziehen Physiker statistische Methoden und Näherungen heran.

Eine bekannte und oft durchaus erfolgreiche Methode besteht darin anzunehmen, dass Elektronen nicht individuell miteinander wechselwirken, sondern mit einer Art „See“, der durch Mittelung über die Positionen der jeweils anderen Elektronen gebildet wird. Hierbei werden aber so genannte elektronische Korrelationen, wie die flexible dynamische Vermeidung räumlicher Zusammenstöße von Elektronen, vernachlässigt. Solche Korrelationen spielen aber gerade bei vielen moderneren Materialien mit interessanten und technologisch nutzbaren Eigenschaften eine zentrale Rolle. Prominente Beispiele sind Hochtemperatur-Supraleiter sowie Verbindungen mit spektakulären magnetischen Eigenschaften, die sich als magnetische Speichermedien eignen.

Die Träger des Europhysik-Preises 2006 haben in den vergangenen zwei Jahrzehnten eine neue Methode zur Berechnung von Materialeigenschaften entwickelt, bei der zumindest die lokalen, das heißt intra-atomaren Korrelationen der wichtigen Valenzelektronen im Festkörper exakt behandelt werden. In dieser so genannten Dynamischen Molekularfeldtheorie (DMFT) werden Korrelationen innerhalb eines Atoms dynamisch berücksichtigt und der Einfluss der Elektronen auf benachbarten Atomen durch ein gemitteltes effektives Feld (Molekularfeld) annähernd bestimmt. Die intra-atomaren elektronischen Korrelationen sind in der Regel die stärksten Wechselwirkungen in einem Material und spielen eine entscheidende Rolle bei Magnetismus, Metall-Isolator-Übergängen sowie auch in Hochtemperatur-Supraleitern.

Ausgangspunkt für die Entwicklung der dynamischen Molekularfeldtheorie war eine ungewöhnliche, auf den ersten Blick vielleicht esoterisch erscheinende Idee. In einer 1989 in der Fachzeitschrift „Physical Review Letters“ publizierten Arbeit zeigten Walter Metzner und Dieter Vollhardt, dass lokale elektronische Korrelationen auch in einem hypothetischen System mit unendlich vielen Raumdimensionen (statt der üblichen drei) erhalten blieben. Gleichzeitig treten in diesem Grenzfall drastische Vereinfachungen in den Bewegungsgleichungen auf, die eine Berechnung der Korrelationseffekte erleichtern. In einigen einfachen Modellrechnungen wurde demonstriert, dass sich physikalische Größen in dreidimensionalen Systemen mit teilweise erstaunlicher Genauigkeit durch eine Rechnung im unendlichdimensionalen Analogon reproduzieren lassen. Etwas verständlicher wird dies, wenn man beachtet, dass die Koordinationszahl, also die Anzahl von unmittelbaren Nachbarn eines jeden Atoms, in dreidimensionalen Systemen je nach Kristallstruktur immerhin bei Werten zwischen 6 und 12 liegt, was in gewisser Hinsicht von unendlich gar nicht mehr so weit entfernt ist.

Die Arbeit von Walter Metzner und Dieter Vollhardt wurde rasch von anderen Forschern aufgegriffen und weiterentwickelt. Bedeutende frühe Beiträge kamen insbesondere von Erwin Müller-Hartmann von der Universität Köln. Antoine Georges und Gabriel Kotliar stellten schließlich in einer 1992 publizierten Arbeit eine elegante Verbindung her zwischen dem System wechselwirkender Elektronen im Limes hoher Raumdimensionen und so genannten Quantenstörstellen-Modellen, bei denen die Elektronen nur innerhalb eines einzelnen Atoms miteinander wechselwirken. Sie brachten damit die dynamische Molekularfeldtheorie auf eine sowohl für die physikalische Interpretation als auch für konkrete Berechnungen besonders geeignete Form.

Die dynamische Molekularfeldtheorie ist inzwischen eine weltweit eingesetzte Standardmethode, die aus der modernen Materialforschung nicht mehr wegzudenken ist. Die vielfältigen Anwendungen reichen von der Untersuchung fundamentaler Fragen der Festkörperphysik bis hin zur Berechnung spezifischer Materialeigenschaften. In den letzten Jahren hat man begonnen, die Theorie durch Einbeziehung interatomarer Korrelationen zwischen Elektronen auszubauen. Erste Anwendungen dieser erweiterten dynamischen Molekularfeld-Methoden auf die theoretisch nur schwer zugänglichen Hochtemperatur-Supraleiter sind vielversprechend.

Prof. Dr. Walter Metzner ist Direktor am Max-Planck-Institut für Festkörperforschung in Stuttgart. Nach dem Studium der Mathematik und Physik an der Technischen Universität München erhielt er ein Promotionsstipendium der Studienstiftung des deutschen Volkes. 1989 promovierte er an der Rheinisch-Westfälischen Technischen Hochschule (RWTH) Aachen. Nach einem mehrjährigen Auslandsaufenthalt in Rom und Princeton habilitierte Metzner 1995 an der RWTH Aachen. Zwischen 1996 und 1998 war er Professor an der Universität München und von 1998 bis 2001 Professor an der RWTH Aachen. 2001 nahm Metzner den Ruf zum Direktor am Max-Planck-Institut für Festkörperforschung an. Er wurde bereits mit dem Friedrich-Wilhelm-Preis der RWTH Aachen, dem Physik-Preis der Akademie der Wissenschaften zu Göttingen und dem Gustav-Hertz-Preis der Deutschen Physikalischen Gesellschaft ausgezeichnet. Walter Metzner wurde 1961 in München geboren.

Media Contact

Dr. Andreas Trepte Max-Planck-Gesellschaft

Weitere Informationen:

http://www.mpg.de

Alle Nachrichten aus der Kategorie: Förderungen Preise

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Prozessüberwachung mit KI: Alte Maschinen kostengünstig nachrüsten

Künstliche Intelligenz (KI) in der Prozessüberwachung kann Ausschuss reduzieren, die Bauteilqualität steigern und das Personal entlasten. Teure Investitionen in neue Maschinen sind dafür nicht unbedingt notwendig. Das zeigt das kürzlich…

Marker in der iPSC-Qualitätskontrolle

– ein neuer Ansatz zur Verbesserung der Standardisierung. Wissenschaftler des IUF – Leibniz-Instituts für umweltmedizinische Forschung in Düsseldorf haben kürzlich eine Studie zum Thema „Neubewertung von Markergenen in humanen induzierten…

Neue Technologie für die Festkörperbatterie

Qkera unter den besten 25 Start-ups bei Falling Walls. Das Start-up Qkera hat neue Elektrolyt-Komponenten für Festkörperbatterien entwickelt. Mit einer hohen Energiedichte, großer Stabilität und niedrigen Produktionskosten will die Ausgründung…