Rückstandsfreie Bauteilentformung durch permanente Werkzeugbeschichtung – auch für Polyurethane

PUR wird von einer permanent beschichteten, nanostrukturierten Metalloberfläche sauber abgelöst. Durch die Nanostruktur kommt es im Bild zur Lichtbeugung und damit zur Farbgebung. (© Fraunhofer IFAM/Wolfgang Hielscher)

Das sogenannte ReleasePLAS® -Trennschichtsystem wurde für die Kunststoffverarbeitung entwickelt und kann an ganz unterschiedliche Anforderungen der Materialien, Verarbeitungsmethoden und Bauteilgeometrien angepasst werden. Eine größere Herausforderung war allerdings bislang die trennmittelfreie Fertigung von Polyurethan-Kunststoffen – kurz PUR.

In einem industriellen Gemeinschaftsprojekt konnten Wissenschaftler nun durch eine Anpassung der PUR-Rezeptur deutlich niedrigere Entformungskräfte erzielen und eine Produktion ohne Trennmittel ermöglichen.

Da ausreagierende Polyurethane eine hohe Haftungsneigung zu metallischen Oberflächen entwickeln, werden in der diskontinuierlichen Verarbeitung Trennmittel eingesetzt, um einen prozesssicheren Verfahrensablauf zu gewährleisten. In der industriellen Praxis werden dabei interne und externe Trennmittel verwendet, die jedoch von einem Trennmittelübertrag auf die Werkzeug- bzw. Bauteiloberfläche begleitet werden.

In der Folge entstehen zusätzliche Arbeitsschritte und Kosten. So müssen die PUR-Bauteile z. B. aufwendig von Trennmittelrückständen gereinigt werden, um ein anschließendes Lackieren oder Verkleben zu ermöglichen. Darüber hinaus reichern sich die Trennmittel im Laufe mehrerer Entformungszyklen auf der Werkzeugoberfläche an und bilden Ablagerungen, was zu einer schlechteren Abformgenauigkeit führt.

Industrie und Wissenschaft verfolgen deshalb konsequent das Ziel, eine dauerhafte und trennmittelfreie Fertigung – auch für Polyurethane – zu realisieren. Bei dem vom Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Bremen entwickelten ReleasePLAS®-Trennschichtsystem wird die Beschichtung direkt auf die Form aufgetragen.

Sie bildet dabei Oberflächenstrukturen perfekt ab und kann in ihrem Eigenschaftsprofil unterschiedlichen Anforderungen angepasst werden. Die stark hydrophob und abweisend wirkende plasmapolymere Schicht besteht aus einem siliziumorganischen Netzwerk und hat sich für viele Kunststoffarten und Fertigungstechniken bewährt.

Polyurethane reagieren anders

In der Polyurethan-Verarbeitung bieten permanente Trennschichten bisher nicht die gewünschten Vorteile gegenüber konventionellen Trennmitteln. In der Regel besteht keine ausreichende Langzeitstabilität der Trennwirkung, sodass auch hier kostenintensive Reinigungen und Wiederbeschichtungen notwendig sind.

Zum Trennverhalten reaktiver Polyurethane auf permanenten Trennschichten konnte bislang nachgewiesen werden, dass die Entformungseigenschaften in Abhängigkeit vom verwendeten PUR-System stark variieren. Das Versagen der Trennwirkung wird dabei durch Ablagerungen auf der Trennschichtoberfläche verursacht, die im Laufe weniger Entformungszyklen entstehen und zu einem Anstieg der Haftkräfte führen.

Durch aufwendige chemische und physikalische Analysen sowie oberflächentechnische Untersuchungen konnten die Fraunhofer IFAM-Forscher nun den Grund für das Versagen des Trennmechanismus herausfinden: Neben dem angestrebten Adhäsionsbruch zwischen Bauteil und Werkzeugoberfläche kommt es auch zu einem Kohäsionsbruch in der oberflächennahen Grenzschicht des Bauteils (Interphase).

Diese zum Zeitpunkt der Entformung nicht ausreichend stabile Interphase des PUR bewirkt, dass nanofeine Ablagerungen auf der Oberfläche des Werkzeugs verbleiben.

Um derartige Materialübertragungsmechanismen zu unterbinden, und somit einen vollständigen Adhäsionsbruch zur Trennschicht zu erzeugen, wurden alle Parameter zur Interphasenstabilität untersucht. Eine weitere Forschungsaufgabe war die Identifikation von Stabilisatoren – beispielsweise oberflächenaktive Additive.

Entwicklung trennfreundlicher PUR-Formulierungen mit stabiler Interphase

Um die Zusammenhänge bei der Interphasenbildung zu verstehen und diese gezielt zu beeinflussen wurden zwei verschiedene, sich ergänzende Lösungsstrategien verfolgt: Zum einen wurde der Einfluss der PUR-Rezeptur auf die Interphase analysiert, wobei systematisch verschiedene Inhaltsstoffe, wie Polyol, Isocyanat und der Katalysator verändert wurden. Zum anderen wurde die Interphase des sich bildenden PUR-Bauteils durch grenzflächenaktive Additive modifiziert und zusätzlich der Einfluss der Masse- und Formtemperatur auf die Fertigungsrandbedingungen untersucht.

Unter praxisnahen Verarbeitungsbedingungen konnten PUR-Modellrezepturen identifiziert werden, die bei der Entformung keine Ablagerungen auf der permanenten Trennschicht hinterlassen. Die Projektergebnisse zeigen, dass insbesondere das Polyol und der verwendete Katalysator einen deutlichen Einfluss auf das Entformungsverhalten haben.

Darüber hinaus konnte ein Additiv identifiziert werden, welches die Entformbarkeit der getesteten PUR-Rezepturen in Kombination mit der ReleasePLAS®-Trennschicht für schlechter trennende Systeme deutlich verbessert. Es wirkt dabei nicht wie ein herkömmliches internes Trennmittel, da es nach aktuellem Kenntnisstand nicht aus dem Bauteil migriert.

Das Additiv wird in die molekulare Struktur des PUR eingebunden, sodass bei einer Verwendung deutlich höhere Werkzeugstandzeiten erzielt werden können. Die Erkenntnis, dass ein geringer Unterschied der Formtemperatur bereits eine sprunghafte Reduktion der Trennkräfte bewirkt, muss ebenfalls in den Fertigungsprozess einfließen.

Ob für die Automobilbranche, die Medizintechnik, den Maschinen- und Anlagenbau oder die optische Industrie – die Ergebnisse des Projekts ermöglichen den Weg hin zu einer sauberen und trennmittelfreien PUR-Produktion. Neben den benannten Vorteilen ermöglicht die trennmittelfreie Produktion eine gleichzeitige Einstellung von unterschiedlichen Oberflächeneigenschaften. So gelingt durch dieses System eine einfache und wirtschaftliche Fertigung von nano- und mikrostrukturierten Oberflächen.

Projektpartner
Institut für Kunststoffverarbeitung (IKV) an der RWTH Aachen

Auftraggeber
IGF-Vorhaben der Forschungsvereinigung: Fördernummer 437 ZN
Das Bundesministerium für Wirtschaft und Energie (BMWi) fördert die IGF mit öffentlichen Mitteln.

http://www.ifam.fraunhofer.de

Media Contact

Martina Ohle Fraunhofer-Gesellschaft

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Merkmale des Untergrunds unter dem Thwaites-Gletscher enthüllt

Ein Forschungsteam hat felsige Berge und glattes Terrain unter dem Thwaites-Gletscher in der Westantarktis entdeckt – dem breiteste Gletscher der Erde, der halb so groß wie Deutschland und über 1000…

Wasserabweisende Fasern ohne PFAS

Endlich umweltfreundlich… Regenjacken, Badehosen oder Polsterstoffe: Textilien mit wasserabweisenden Eigenschaften benötigen eine chemische Imprägnierung. Fluor-haltige PFAS-Chemikalien sind zwar wirkungsvoll, schaden aber der Gesundheit und reichern sich in der Umwelt an….

Das massereichste stellare schwarze Loch unserer Galaxie entdeckt

Astronominnen und Astronomen haben das massereichste stellare schwarze Loch identifiziert, das bisher in der Milchstraßengalaxie entdeckt wurde. Entdeckt wurde das schwarze Loch in den Daten der Gaia-Mission der Europäischen Weltraumorganisation,…

Partner & Förderer