Paket abgeliefert: Neue Kontrastmittel für Kernspin-Diagnostik überwinden Blut-Hirn-Schranke

Die neuartige Xenon-Diagnostik ist eine Weiterentwicklung der aus dem klinischen Alltag vertrauten Kernspintomographie, die derzeit weltweit in mehreren Arbeitsgruppen intensiv vorangetrieben wird. Der Gruppe um Leif Schröder am Berliner Leibniz-Institut für Molekulare Pharmakologie (FMP) ist es in den vergangen Jahren gelungen, die Empfindlichkeit der Methode soweit zu erhöhen, dass nun erste medizinischen Einsatzmöglichkeiten erprobt werden können.

In ihrer neuesten Arbeit haben sie die beim Xenon-Kernspintomographen eingesetzten molekularen Sonden in winzige Biomembranbläschen (Liposomen) verpackt und sie gezielt zu dem Typ von Zellen dirigiert, die im menschlichen Körper die Grenze zwischen Blut und Hirnflüssigkeit bilden.

Diese sogenannte Blut-Hirn-Schranke ist eine lebenswichtige Barriere aus dicht gepackten Endothelzellen, die nur wenige Stoffe selektiv durchlässt und das empfindliche Gehirn so vor schädlichen Substanzen schützt. Störungen der Blut-Hirn-Schranke können die Ursache oder auch die Folge verschiedener neurologischer Erkrankungen sein, weshalb es schon länger Versuche gibt, Schäden in der Barriere durch bildgebende Diagnostik sichtbar zu machen.

Bei der Kernspintomographie nutzt man die Eigenschaft mancher Atome aus, in starken Magnetfeldern selbst wie winzige Magnete zu agieren, die dann mit Radiowellen in Resonanz treten können und so Signale aussenden. Die herkömmliche Methode verwendet Wasserstoffatome, die in Gewebe allgegenwärtig sind, allerdings nur sehr schwache Signale aussenden.

Die Xenon-Kernspintomographie dagegen setzt als Signalgeber das Edelgas Xenon in einer bestimmten Form ein – es wird mittels Laserstrahlen „hyperpolarisiert“ und sendet dadurch 10.000fach stärkere Signale als normal aus. In einer klinischen Anwendung könnten Patienten zuvor hyperpolarisiertes Xenon inhalieren, das ungiftige Edelgas würde sich dann rasch über den Blutkreislauf im Körper verteilen.

Durch diese Signalverstärkung lassen sich prinzipiell auch bislang unsichtbare Strukturen sichtbar machen, wenn man das Xenon gezielt in den gesuchten Zellen anreichert – und eben dies ist den FMP-Forschern nun erstmals gelungen. Die Xenon-Atome werden während eines Scans in käfigförmigen Cryptophan-Molekülen eingefangen, wodurch sich ihr Signal im Magnetfeld verändert. Die FMP-Forscher haben das Cryptophan nun in Liposomen verpackt, die gut erprobt und verträglich sind, und mit einem molekularen Anker versehen, der sie in die Zellen der Blut-Hirn-Schranke eindringen lässt.

„Das Ganze funktioniert wie eine Art Paketdienst, bei dem wir in unserem Xenon-Kernspintomographen zugleich verfolgen können, wo sich das Paket auf dem Weg zu seinem Ziel gerade befindet“, erklärt Matthias Schnurr. Er stellte als Doktorand und Erstautor der Arbeit seine Forschung gerade auf einem internationalen Kongress in Seoul vor und erhielt dafür aufgrund des großen Potenzials der Methode eine Förderung vom Deutschen Akademischen Austauschdienst. Im Prinzip könnte man auf diese Weise sogar Medikamente verabreichen und deren Zustellung im Körper wie mit einem Tracking-System verfolgen.

Noch finden die Versuche an Zellen in Messröhrchen statt, Gruppenleiter Leif Schröder denkt nun über Tierversuche nach. Die Xenon-Kernspintomographie sei derzeit in einem experimentellen Stadium angekommen, in dem viele biologische Anwendungen entwickelt und getestest werden. „Die Idee mit den Liposomen ist durch ein eher zufälliges Gespräch von zwei Doktoranden – Karl Sydow aus Margitta Dathes Arbeitsgruppe und Matthias Schnurr aus meiner Gruppe – hier am FMP entstanden“, freut sich Leif Schröder.

„Ich war gleich einverstanden, und da haben wir die Expertise von Margitta Dathes Team mit unserer verknüpft, um einen wichtigen Fortschritt zu erzielen. Aber dass es so gut funktionieren würde, hatte ich nicht erwartet.“ Die in der Fachzeitschrift „Advanced Healthcare Materials“ veröffentlichten Ergebnisse werden in einer der nächsten Ausgaben mit einem Titelblatt besonders hervorgehoben.

Das Leibniz-Institut für Molekulare Pharmakologie (FMP) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.500 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Kontakt:
Dr. Leif Schröder
Leibniz-Institut für Molekulare Pharmakologie (FMP)
lschroeder (at) fmp-berlin.de
Tel.: 0049 30 94793-121

Silke Oßwald
Öffentlichkeitsarbeit
Leibniz-Institut für Molekulare Pharmakologie (FMP)
osswald (at) fmp-berlin.de
Tel.: 0049 30 94793-104

Media Contact

Silke Oßwald idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.fmp-berlin.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer