Muskelfasern machen mechanische Belastungen sichtbar

Ein Aktin-Netzwerk betrachtet durch das konfokale Rheometer<br>

Streckt man eine Folie aus Polyethylen stark, so wird sie reißfester. Einkaufstüten werden so erheblich belastbarer. Der Effekt wird einer Neuordnung der Polymerketten zugeschrieben. Manche elastischen Polymere werden durch eine häufig wiederkehrende Belastung weicher. Dieses Verhalten wurde nach seinem Entdecker Mullins-Effekt genannt. Doch was die Polymerketten bei mechanischer Belastung genau tun, ist bisher nicht ausreichend verstanden. Ein Grund dafür ist, dass synthetische Polymere zu klein sind, um sie mit mikroskopischen Methoden während der mechanischen Belastungsexperimente zu beobachten. Ein besseres Verständnis der Vorgänge auf der molekularen Ebene würde bei der Entwicklung neuer Kunststoffe sehr viel Zeit und Geld sparen.

Auch die Natur macht sich die mechanischen Eigenschaften von Polymeren zu Nutze: Biologische Polymere geben Zellen ihre Stabilität und spielen eine entscheidende Rolle bei der Ausführung ihrer komplexen Funktionen. Das Physiker-Team um Professor Andreas Bausch nutzte nun das Muskelfaser-Protein Aktin, um ein Polymernetzwerk zu bilden. Die Aktin-Fasern sind unter einem Fluoreszenzmikroskop sichtbar. Damit gelang es den Wissenschaftlern, die Bewegungen der einzelnen Fasern bei mechanischer Belastung des Materials direkt zu beobachten.

Durch die gleichzeitige Verwendung eines Rheometers, mit dessen Hilfe mechanische Eigenschaften von Materialien untersucht werden können, und eines konfokalen Mikroskops konnten die Wissenschaftler das Verhalten des Aktin Netzwerks während der mechanischen Verformungen beobachten und dreidimensional filmen.

Mit ihren nun im Online-Journal Nature Communications veröffentlichten Untersuchungen konnten sie zeigen, dass ihr Modellsystem nicht nur die dem Mullins-Effekt zugrunde liegenden Vorgänge auf molekularer Ebene zeigen kann sondern auch den gegenteiligen Effekt, bei dem das Material bei wiederholter Belastung härter wird.

Verantwortlich für die Änderungen der mechanischen Eigenschaften sind umfangreiche Umorganisationen der Netzwerkstruktur, die auf diese Weise erstmals direkt beobachtet werden konnten. In Zukunft wird das Modell der Physiker dabei helfen, auch die Eigenschaftsänderungen anderer Materialien besser zu verstehen.

Die Arbeiten wurden unterstützt aus Mitteln der Deutschen Forschungsgemeinschaft (Exzellenzcluster Center for Nanosystems Initiative Munich, International Graduate School of Science and Engineering der TUM) sowie dem Bayerischen Elitenetzwerk (CompInt). Die Kooperationspartner an der Georgetown University, Washington D.C., USA, wurden unterstützt aus Mitteln der National Science Foundation und des Air Force Office of Scientific Research der USA.

Originalpublikation:
Cyclic hardening in bundled actin networks, K. M. Schmoller, P. Fernández, R. C. Arevalo, D. L. Blair und A. R. Bausch, Nature Communications, Vol. 1, 134, 7. Dezember 2010 – DOI: 10.1038/ncomms1134

http://www.nature.com/ncomms/journal/v1/n9/full/ncomms1134.html

Kontakt:
Prof. Dr. Andreas Bausch
Technische Universität München
Lehrstuhl für Zellbiophysik (E 27)
James Franck Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12480
Fax: +49 89 289 14469
E-Mail: andreas.bausch@ph.tum.de

Media Contact

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer