Warum ein Fußballspiel im Gehirn entschieden wird

Der Stürmer muss bei diesem Torschuss seine Aufmerksamkeit aufteilen: Neben dem Torwart muss er die Nummer 3 beachten, die seinen Schuss blockieren könnte. Durch Teilung seines „Aufmerksamkeitsscheinwerfers’“behält er die optimale Übersicht. Um seine Verarbeitungskapazitäten nicht zu überlasten, ist er in der Lage alles neben und zwischen seinen beiden Aufmerksamkeitsbereichen auszublenden. Damit stehen ihm alle für den Torschuss notwendigen Informationen in optimaler Qualität und ohne Ablenkung zur Verfügung. Dieser Prozess ist in der Abbildung durch entsprechende Unschärfen dargestellt.<br><br>Bild: Fuchstrick GbR/ Christian Kiel<br>

Xavi spielt den Ball zu Andrès Iniesta, der lässt ihn einmal präzise prallen und gleich ist das Leder bei Xabi Alonso. Als wären sie Ballmagneten kreiseln die Mittelfeldspieler der spanischen Fußballnationalmannschaft über das Spielfeld, immer den Ball und die Mitspieler im Blick.

Die Gegner rasen wie hilflose Statisten hinterher. Göttinger Neurowissenschaftler haben herausgefunden, wie das menschliche Gehirn durch die Verteilung von visueller Aufmerksamkeit zum Beispiel diesen „Tiki-Taka“-Fußball der spanischen Europameister möglich macht. Visuelle Aufmerksamkeit nennen Wissenschaftler die Fähigkeit, sich auf Sinnesinformationen zu konzentrieren, die für unsere Handlungen wichtig sind. Oft gibt es aber mehrere Dinge, die wir gleichzeitig beachten müssen, wie die Europameister aus Spanien bei ihrem Kurzpass-Spiel eben Ball und Mitspieler. Wie dies gelingt, auch wenn unwichtige Objekte uns ablenken könnten, war bislang unklar.

Ein Wissenschaftlerteam um Stefan Treue vom Deutschen Primatenzentrum (DPZ) in Göttingen hat zusammen mit Kollegen der McGill Universität in Montreal in einer Studie an Rhesusaffen herausgefunden: Das Gehirn ist in der Lage, Aufmerksamkeit quasi als Doppelscheinwerfer einzusetzen, die gleichzeitig einzelne Spots auf die relevanten Objekte legen und die unwichtigen im Dunkeln lassen (Neuron, 10.1016/j.neuron.2011.10.013).

Wenn wir ein Objekt beachten, so sind die Nervenzellen im Gehirn aktiv, die für diesen Teil des Gesichtsfelds zuständig sind. Manchmal müssen wir uns jedoch gleichzeitig auf mehrere Gegenstände an verschiedenen Raumpositionen konzentrieren, zwischen denen sich zudem oft noch für uns irrelevante Dinge befinden. Es existierten verschiedene wissenschaftliche Theorien, wie dies funktionieren könnte. Es könnte sein, dass sich der Aufmerksamkeitsfokus räumlich teilt und die Störfaktoren dazwischen ausblendet. Eine andere Möglichkeit wäre, dass der „Scheinwerfer der Aufmerksamkeit“ sich so breit auffächert, dass er alle relevanten Objekte erfasst, aber auch die unwichtigen Dinge dazwischen. Denkbar wäre auch, dass der Aufmerksamkeitsscheinwerfer sehr schnell zwischen den verschiedenen beachteten Objekten hin und her wechselt.

Um zu erklären, wie unser Gehirn mit dieser schwierigen Situation umgeht, haben die DPZ-Forscher und ihre kanadischen Kollegen die Aktivität einzelner Nervenzellen im für das Sehen zuständigen Teil des Gehirns gemessen. Die Untersuchungen fanden an zwei auf eine Sehaufgabe trainierten Rhesusaffen statt. Die Tiere hatten erfolgreich gelernt, auf einem Monitor zwei für sie wichtige Objekte zu beachten, zwischen denen sich ein unwichtiger Störreiz befand. Es zeigte sich, dass die Nervenzellen der Affen auf die beiden beachteten Objekte verstärkt reagierten und das Störsignal nur ein schwache Reaktion auslöste. Das Gehirn kann also die visuelle Aufmerksamkeit räumlich aufspalten und dazwischen liegende Bereiche ignorieren. „Unsere Ergebnisse zeigen die große Anpassungsfähigkeit des Gehirns, die es uns ermöglicht, mit vielen verschiedenen Situationen optimal umzugehen. Dieses Multi-Tasking erlaubt es uns gleichzeitig mehrere Dinge zu beachten“, sagte Stefan Treue, Leiter der Abteilung Kognitive Neurowissenschaften am Deutschen Primatenzentrum. Die Flexibilität unseres Aufmerksamkeitssystems ist also eine Voraussetzung dafür, dass Menschen zu fast unfehlbaren Fußballartisten werden können, aber auch dafür, dass wir uns sicher im Straßenverkehr bewegen können.

Originalpublikation
Robert Niebergall, Paul S. Khayat, Stefan Treue, Julio C. Martinez-Trujillo (2011): Multifocal attention filters out targets from distractors within and beyond primate MT neurons receptive field boundaries. Neuron, Volume 72, Issue 6, 1067-1079, 22 December 2011. doi: 10.1016/j.neuron.2011.10.013

Kontakt
Prof. Dr. Stefan Treue
Tel: +49 551 3851-118
E-Mail: treue@gwdg.de

Dr. Susanne Diederich (Kommunikation)
Tel: +49 551 3851-359
Mobil: +49 151 42616141
E-Mail: sdiederich@dpz.eu

Die Deutsches Primatenzentrum GmbH (DPZ) – Leibniz-Institut für Primatenforschung betreibt biologische und biomedizinische Forschung über und mit Primaten auf den Gebieten der Infektionsforschung, der Neurowissenschaften und der Primatenbiologie. Das DPZ unterhält vier Freilandforschungsstationen in den Tropen und ist Referenz- und Servicezentrum für alle Belange der Primatenforschung. Das DPZ ist eine der 86 Forschungs- und Infrastruktureinrichtungen der Leibniz-Gemeinschaft.

Media Contact

Dr. Susanne Diederich idw

Weitere Informationen:

http://www.dpz.eu/ http://www.dpz.eu/akn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer