Cockayne-Syndrom

Genzentrum - AG Stingele
© LMU / Jan Greune

Neue Einblicke in zellulären DNA-Reparaturmechanismus.

Forschende der LMU entschlüsseln Reparaturmechanismus bei der Transkription der Erbinformation.

Das Cockayne-Syndrom gehört zu den autosomal-rezessiv vererbbaren schweren Erkrankungen, bei denen Mechanismen der DNA-Reparatur gestört sind. Betroffene haben eine deutlich verkürzte Lebenserwartung. Sie leiden an Gesichtsfehlbildungen, Wachstumsstörungen, neurologischen, kognitiven und sensorischen Einschränkungen, Fehlbildungen von Knochen, Gelenken und Muskulatur sowie Nierenproblemen und an vorzeitiger Alterung. Gemeinsam mit Xeroderma pigmentosum (XP) gehört das Cockayne-Syndrom (CS) zu den Erkrankungen, bei denen Elemente der Nukleotidexzisionsreparatur (NER) gestört sind. Ziel dieses Reparaturmechanismus ist es, Schäden an der DNA zu beheben, die durch verschiedene Ursachen wie UV-Licht, Chemikalien oder andere Umweltfaktoren entstehen.

Forschende aus der Gruppe des Biochemikers Professor Julian Stingele vom Genzentrum der LMU haben jetzt Details zur Rolle der beim Cockayne-Syndrom betroffenen Gene CSA und CSB herausgefunden. Diese codieren für zwei Enzyme, die im Zusammenhang mit der DNA-Reparatur stehen. Die Ergebnisse der Arbeit sind im Fachmagazin Nature Cell Biology erschienen. „Unsere Daten weisen auf eine neue, bisher unbekannte Funktion dieser beiden Gene beziehungsweise ihrer Genprodukte bei der Reparatur von kovalenten DNA-Protein-Bindungen im Zuge der Transkription hin“, berichtet Stingele. Hierbei handelt es sich um zelltoxisch wirkende, biologisch unerwünschte Bindungen von Proteinen an die DNA.

Ein Hindernis für die Transkription

In Zusammenarbeit mit Forschenden der Universität Cambridge konnten die Wissenschaftlerinnen und Wissenschaftler zeigen, dass DNA-Protein-Bindungen ein physisches Hindernis für die Fortsetzung der Transkription darstellen. Der Stopp der Transkription bringt CS-Proteine zu den Blockadestellen. „Unsere Ergebnisse deuten darauf hin, dass CSB und CSA anschließend die transkriptionsgekoppelte Reparatur der toxischen DNA-Protein-Bindungen einleiten“, sagt Stingele. „Diese bisher unerkannte zelluläre Funktion der CS-Proteine führt zur Markierung des DNA-Schadens – und damit dessen enzymatischem Abbau.“

Die Studie ergab auch, dass diese neue Funktion der CS-Proteine unabhängig von der Funktion der bekannten klassischen TC-NER (transcription-coupled nucleotide excision repair)-Enzyme ist, die unter anderem bei der Reparatur von DNA-Schäden durch UV-Licht zum Einsatz kommen – und deren Fehlen zu Xeroderma pigmentosum führt. „Die Tatsache, dass CS-Proteine zusätzliche Funktionen haben, ist bemerkenswert. Sie könnte dazu beitragen, die pathologischen Unterschiede zwischen Xeroderma pigmentosum und dem Cockayne-Syndrom zu erklären“, sagt Stingele. So sei CS, verglichen mit XP, eine schwerere und facettenreichere Krankheit mit komplexen und unvollständig verstandenen Ursachen. Im nächsten Schritt will Stingeles Forschungsgruppe den genauen Ablauf der durch CS-Proteine vermittelten Reparatur entschlüsseln.

Wissenschaftliche Ansprechpartner:

Professor Dr. Julian Stingele
Gene Center and Department of Biochemistry
Ludwig-Maximilians-Universität München
stingele@genzentrum.lmu.de
Tel. +49 89 2180 71101

Originalpublikation:

Christopher J. Carnie et al.: Transcription-coupled repair of DNA-protein crosslinks depends on CSA and CSB. Nature Cell Biology 2024
https://doi.org/10.1038/s41556-024-01391-1

https://www.lmu.de/de/newsroom/newsuebersicht/news/cockayne-syndrom-neue-einblicke-in-zellulaeren-dna-reparaturmechanismus.html

Media Contact

LMU Stabsstelle Kommunikation und Presse
Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer