Atomare Anordnung als Schlüssel für Materialeigenschaften

Graphische Darstellung der Domänenwände. Foto: Nymus3D

Wie kann die Speicherkapazität von Mikrochips erhöht werden? Wie verbessert man die Eigenschaften von Halbleitern? Materialwissenschaftler suchen schon lange nach einer Möglichkeit die physikalischen Eigenschaften von Materialien auf atomarer Skala zu kontrollieren und dadurch ihre Eigenschaften zu verbessern.

Nanoforscher des Düsseldorfer Max-Planck-Instituts für Eisenforschung (MPIE) sind zusammen mit Kollegen der Universitäten Groningen (Niederlande), Zaragoza (Spanien), Tarragona (Spanien) und München, und Forschungsinstituten in Toulouse (Frankreich) und Barcelona (Spanien) dieser Herausforderung einen Schritt näher gekommen.

Für die Kontrolle von Materialeigenschaften sind besonders Oxide interessant, da bereits kleine Modifikationen ihrer atomaren Struktur einen großen Einfluss auf ihre magnetischen und elektrischen Eigenschaften haben. Aus früheren Arbeiten ist bekannt, dass die für Halbleiter und Speichermedien interessante Materialkombination Terbium-Mangan-Oxid zwei wesentliche Eigenschaften kombiniert: sie ist sowohl ferroelektrisch als auch ferromagnetisch bis zu einer Materialdicke von ca. 80 Nanometern. Im Vergleich dazu ist ein menschliches Haar etwa 80.000 Nanometer dick.

Diese Eigenschaften sind besonders wichtig, weil sie zum Beispiel die Kapazität von Datenspeichern bestimmen. Ist das Material dicker als 80 Nanometer, so ist es nur noch ferroelektrisch. In der Materialwissenschaft wurde lange diskutiert, warum diese Materialkombination gleichzeitig diese beiden Eigenschaften aufweist – aus dieser Erkenntnis erhoffte sich die Fachwelt die Eigenschaften besser kontrollieren zu können.

„Die Materialkombination aus Terbium-Mangan-Oxid wird als Dünnschichtfilm auf ein Substrat aus Strontium-Titan-Oxid aufgetragen. Lange sind wir davon ausgegangen, dass die ferromagnetischen und –elektrischen Eigenschaften im Wesentlichen durch die Grenzfläche zwischen Dünnschicht und Substrat bestimmt werden. Jetzt können wir zeigen, dass sich innerhalb der Terbium-Mangan-Oxid Dünnschicht eine neue Phase, eine sogenannte Domänenwand, als Grenze zwischen zwei Bereichen bildet, welche die Eigenschaften für unser System dominiert.

Die Terbium-Atome sitzen dabei in einer Zick-Zack-Linie entlang der Kristallstruktur des Dünnfilms. Wenn sich zwei solcher Zick-Zack-Linien an einer Domänenwand treffen, verursacht dies Spannungen. Das Faszinierende ist, dass innerhalb dieser Domänenwand ein Terbium-Atom durch ein Mangan-Atom ausgetauscht wird. Genau diese zusätzlichen Mangan-Atome verursachen die magnetischen Eigenschaften der Dünnschicht“, erläutert Dr. Sriram Venkatesan, wissenschaftlicher Mitarbeiter am Max-Planck-Institut für Eisenforschung in der Abteilung Struktur und Nano- / Mikromechanik von Materialien.

Eine Phase ist hierbei ein räumlicher Bereich innerhalb eines Materials, bei dem die Zusammensetzung der Materie und bestimmende physikalische Parameter, wie die magnetischen Eigenschaften oder die Dichte, homogen sind.

„Wir können die Anzahl der Domänenwände sehr gut kontrollieren. Während man früher dachte, Domänenwände müssten bei der Herstellung der Materialschichten vermieden werden, wissen wir jetzt, dass wir sie nutzen können, um die Materialeigenschaften zu beeinflussen“, erklärt Prof. Christina Scheu, Leiterin der unabhängigen Forschungsgruppe ‚Nanoanalytik und Grenzflächen‘ am MPIE.

Zusammen mit Dr. Sriram Venkatesan und Alexander Müller, Doktorand in ihrer Gruppe, war sie an der Aufklärung der atomaren Struktur und chemischen Zusammensetzung innerhalb des Forschungsprojekts von Frau Prof. Beatriz Noheda (Universität Groningen) beteiligt. Hintergrund ist, dass innerhalb der Domänenwände die Symmetrie der Atome im Kristall aufgebrochen wird.

Dadurch weisen Domänenwände andere Eigenschaften als der Rest des Materials auf. „Je dünner die Materialschichten, desto mehr Domänenwände entstehen. Und je mehr Wände es gibt, desto magnetischer das Material“. Die Wissenschaftler nehmen an, dass dieser Effekt bei allen Zick-Zack-Mustern auftritt und somit die atomare Struktur und chemische Zusammensetzung der Domänenwände eine zentrale Rolle für die Eigenschaften einnehmen.

Die internationale Forschergruppe hat ihre Erkenntnisse mittels Computersimulationen und Experimenten verifiziert. Die Nutzung der Domänenwände in komplexen Oxiden zur Beeinflussung von Materialeigenschaften kann auch auf andere Materialsysteme angewendet werden und öffnet somit den Weg für neue und optimierte Anwendungen in der Halbleiterindustrie und Spintronik, ein neues Forschungsgebiet in der Nanoelektronik. Die Zukunft von Speichermedien und Computern kann somit maßgeblich beeinflusst werden.

Publikation:
S. Farokhipoor, C. Magén, S. Venkatesan, J. Íniguez, C.J.M. Daumont, D. Rubi, E. Snoeck, M. Mostovoy, C. de Graaf, A. Müller, M. Döblinger, C. Scheu & B. Noheda: Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide. In: Nature 515, 379–383, (20 November 2014), doi:10.1038/nature13918

Weitere Informationen:

http://www.mpie.de

Media Contact

Yasmin Ahmed Salem Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer