Additive Manufacturing Challenge 2015: Studentenprojekt belegt 1. Platz bei weltweitem Wettbewerb

Querschnittsdarstellung der Heat pipes (Gitterabstand 100 µm bei 20 µm Schichtdicke). Links: Heat pipe-Aufbau mit Innenstruktur, rechts: Aufbau mit Außenstruktur. © Fraunhofer IFAM/Dagmar Fischer

Ob Gefriergeräte, Serverschränke oder Computer – alle Geräte benötigen für die Wärmeabfuhr ihrer Prozessoren Kühleinheiten, die die entstehende Abwärme über Kühlrippen an die Umgebungsluft abgeben. Zusätzlich erzeugen meist Ventilatoren einen Luftstrom zwischen den Kühlrippen, sodass die Wärme schneller abtransportiert werden kann.

Die Grundidee hinter der entwickelten Kühleinheit ist, einen Teil der Abwärme der Geräte zu nutzen, um daraus Strom zu erzeugen und damit einen Ventilator zu betreiben. Gleichzeitig konstruierten die jungen Wissenschaftler einzigartige Kühlrippen mit besonders hoher Oberfläche auf kleinstem Raum. Umgesetzt wurde diese Idee mit einem generativen Fertigungsverfahren.

Schneller Wärmetransport mit generativ gefertigten Heat pipes

Damit ein thermoelektrischer Generator dauerhaft Strom erzeugt, muss ein konstanter Temperaturgradient hergestellt und dem Generator zugeführt werden. Vereinfacht gesagt, ist dabei eine Seite des Stromerzeugers warm und eine kalt. Insbesondere die Aufrechterhaltung dieses Temperaturgradienten stellte eine Herausforderung dar, da gleichzeitig die Abwärme des Prozessors schnell zum Generator hingeführt und die anfallende Wärmeenergie möglichst effektiv von der kalten Seite wieder abgeführt werden muss. Für diese beiden Aufgaben sind Heat pipes bestens geeignet.

Dabei handelt es sich um dünnwandige Rohre, die mit einem Arbeitsfluid, häufig Wasser, gefüllt sind. Durch einen Innendruck von wenigen Millibar liegt das Wasser in Heat pipes schon bei etwas über Raumtemperatur als Dampf vor. Wird eine Heat pipe erwärmt beginnt ein Kreislauf, bei dem Wasser an warmen Stellen verdampft und an kalten Stellen wieder verflüssigt.

So bringt der Dampf Wärme effektiv zu kalten Stellen, kondensiert und fließt als Wasser wieder zurück. Im Rahmen des Projektes wurden individuelle Heat pipes konstruiert, mittels generativer Fertigung hergestellt und optimiert. So entstanden Heat pipes mit einer maximalen Krümmung von 45 Grad und internen Kapillarstrukturen, die für einen schnelleren Rücktransport des Wassers zu den warmen Stellen sorgen. Dieser komplexe Aufbau ist nur mit einem 3D-Druckverfahren wie dem Selective Laser Melting (SLM) möglich.

Kühlrippen: Form von der Natur inspiriert

Um die Wärmeübertragung an die Umgebung und damit die Kühlung insgesamt zu verbessern, haben sich die Studierenden bei ihrer Entwicklung etwas sehr besonderes ausgedacht: Von den verzweigenden Strukturen der Bäume inspiriert, besitzt das Kühlsystem keine gerippte Struktur, sondern »Äste« mit blattähnlichen Strukturen. Ziel bei der Konstruktion war es, ein möglichst hohes Oberflächen zu Volumenverhältnis zu generieren, um einen guten Wärmeübergang zur Luft zu erhalten. Diese komplexe und filigrane Struktur wurde ebenfalls im SLM-Verfahren hergestellt.

Cooling With Heat-Team
Jonas Deitschun, Melanie Gralow, Lena Heemann, Sebastian Kalka, Daniel Knoop

http://www.ifam.fraunhofer.de

Media Contact

Martina Ohle Fraunhofer IFAM

Alle Nachrichten aus der Kategorie: Förderungen Preise

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer