Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrakurzpulslaser: Einzelpulsgenaue Echtzeit-Positionierung

30.07.2012
BMBF-Verbundprojekt ScanLine: Neuartige, hochpräzise Steuerungsarchitektur synchronisiert Laser mit mehreren Ablenkeinheiten untereinander.
BMBF-Verbundprojekt ScanLine

Ultrakurze Laserpulse mit Dauern von einigen Femtosekunden (1 fs = 10 hoch −15 s) bis hin zu wenigen Pikosekunden (1 ps = 10 hoch −12 s) erlauben völlig neue Bearbeitungsverfahren, die mit konventionellen Werkzeugen so nicht möglich sind. Wesentliches Merkmal der Laserblitze sind extrem hohe Spitzenintensitäten, die auf Grund der starken zeitlichen Kompression bereits mit sehr geringen Pulsenergien erreicht werden können. Dies ermöglicht einen hochpräzisen Materialabtrag ebenso wie die Bearbeitung temperatursensibler Materialien ohne thermische Schädigung.

Um diese Vorzüge der Ultrakurzpulslaser für genaue Bearbeitungsresultate auch effektiv nutzen zu können, ist es wichtig, jeden einzelnen Laserpuls präzise abzulenken und reproduzierbar mittels sogenannter Scanner auf dem jeweiligen Werkstück zu positionieren.

Hohe Pulswiederholrate mit einigen Tausend bis zu einigen Million Schuss pro Sekunde stellen sehr hohe Ansprüche an die Geschwindigkeit und Präzision der elektro-mechanischen Ablenkeinheiten. Mit zunehmender Geschwindigkeit treten hier z.B. auf Grund der Trägheit Schleppfehler oder Pulsüberlapp auf, die es zu kompensieren gilt. Bisher führt dies meist dazu, dass Pulse verworfen werden müssen und somit die eigentlich mögliche Bearbeitungsgeschwindigkeit nicht erreicht wird.

Die Pulswiederholrate wird in der Regel vom Laserresonator bestimmt und kann nur bedingt von außen vorgegeben werden. Häufig weist diese zusätzlich noch eine statistische Schwankung auf, welche die Synchronisation mit den Ablenkeinheiten erschwert. Darüber hinaus müssen alle Komponenten, welche den Strahlengang des Lasers festlegen, auch noch die hohen Pulsspitzenleistungen aushalten, um lange Standzeiten in der Anwendung und somit einen wirtschaftlichen Betrieb zu ermöglichen.

Die angestrebte Innovation des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Verbundes „ScanLine“ stellt eine neuartige Steuerungsarchitektur dar, welche es ermöglichen wird, sowohl den Laser als auch mehrere Ablenkeinheiten untereinander zu synchronisieren. Somit soll es möglich werden, verschiedene Ablenksysteme zu kombinieren und ihre jeweiligen Vorteile auszunutzen. So soll z.B. der Schleppfehler, welcher bei mechanischen Scannern bei schnellen Bewegungen auftritt, durch zusätzliche kleine, dafür aber schnellere Ablenkungen durch elektro-optische Kristalle kompensierbar werden.

Mit Hilfe dieser neu zu erforschenden Technologie soll erstmalig für Laser mit hohen Pulsfolgefrequenzen im MHz Bereich eine präzise synchronisierte Bewegung von mechanischen- und die Ansteuerung von elektro-optischen Strahlpositioniereinheiten mit der Möglichkeit einer phasenstarren Kopplung zu einem extern vorgegebenen Laseroszillator verwirklicht werden.

Hintergrund zum BMBF-Verbundprojekt
Das BMBF-Verbundprojekt ist am 01. April 2012 gestartet und läuft im Rahmen der BMBF-Initiative „Ultrakurzpulslaser für die hochpräzise Bearbeitung“ über einen Zeitraum von drei Jahren bis zum 31. März 2015. Das BMBF unterstütz die Arbeiten des Projekts mit knapp 3,2 Millionen Euro. Mit der Projektträgerschaft hat das BMBF die VDI Technologiezentrum GmbH beauftragt.

Am Ende dieses Projekts sollen unter Berücksichtigung der Ergebnisse aus verschiedenen Analysen die Controller, Optiken, Optoelektroniken, Schnittstellen und Mechaniken erarbeitet werden, die auf die Realisierung in verschiedenen Demonstratoren der einzelnen Partner angepasst und integriert werden.

Projektpartner
• ARGES GmbH, Wackersdorf (Verbundkoordination)
• LIMO GmbH, Dortmund
• Qioptiq Photonics GmbH & Co. KG, Feldkirchen
• KUGLER GmbH, Salem
• Paul Pleiger Maschinenfabrik GmbH & Co. KG, Witten
• Fraunhofer Institut für Angewandte Optik und Feinmechanik IOF Jena

Daniela Metz | idw
Weitere Informationen:
http://www.photonikforschung.de/

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Kühlsystem ohne schädliche Kältemittel
01.08.2019 | Fraunhofer IPM

nachricht Batterieproduktion in Rekordgeschwindigkeit
30.07.2019 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics