Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Solarindustrie erzielt hohen Kostenvorteil durch den Einsatz des richtigen Lasers

11.09.2012
Für die Produktion sensibler elektronischer Bauteile wie Solarzellen sind berührungslose und materialselektive Laserprozesse von zentraler Bedeutung.

Das Werkzeug Licht kann für die kristalline und die Dünnschicht-Photovoltaik den entscheidenden Schritt zu höheren Effizienzen und geringeren Herstellungskosten ermöglichen.


Laufender Prozess zum selektiven Abtrag einer Siliziumnitridschicht auf einem Siliziumwafer.
Fraunhofer ILT, Aachen


Mittels Laserstrahlung strukturiertes siliziumbasiertes Dünnschichtmodul.
Fraunhofer ILT, Aachen

Mit diesem Ziel entwickelt das Fraunhofer-Institut für Lasertechnik ILT robuste, industrietaugliche Verfahren zur hochauflösenden Strukturierung dünner Schichten sowie maschinentechnische Komponenten für hohen Durchsatz. Im Vordergrund der Forschungsaktivitäten steht dabei die Optimierung der Prozesse durch den Einsatz des richtigen Lasers.

Eine konkurrenzfähige Prozesstechnik für die Produktion von elektronischen Komponenten erfordert hohe Geschwindigkeiten, geringe Strukturgrößen und die Anwendbarkeit auf große Formate. In der organischen Elektronik erlaubt strukturiertes Drucken bei hohen Geschwindigkeiten derzeit Strukturgrößen bis circa. 10 Mikrometern. Eine wesentlich höhere Auflösung und Produktivität lässt sich mit der Strukturierung durch Laser erreichen. Hier kommt es besonders darauf an, denjenigen Laser auszuwählen, der optimal für die Erfordernisse der individuellen Anwendung geeignet ist.

»Die meisten Unternehmen in der Solarindustrie wissen gar nicht, wie viel Zeit und Kosten sie durch den Einsatz des richtigen Lasers bei der Herstellung von Dünnschicht- Solarmodulen oder kristallinen Solarzellen sparen können«, erklärt Dr. Malte Schulz-Ruthenberg, Projektleiter am Fraunhofer ILT. »Zum Beispiel erfordert die Erzeugung komplexer Strukturen für die Realisierung von elektronischen Schaltungen bei hohen Flächenraten völlig andere Ansätze zur Strahlführung und –formung als das Hochrate-Bohren für Rückkontakt-Solarzellen«

Am Fraunhofer ILT verfolgen Wissenschaftler daher in mehreren Projekten unterschiedliche Ansätze zur Verbesserung der Prozesseffizienz. Dazu gehört unter anderem die Möglichkeit der Mehrfachstrahlteilung durch Verwendung von diffraktiv-optischen Elementen, die den Durchsatz einer Produktionsanlage drastisch erhöhen können. Die Entwicklung eines Polygonscanners wiederum erlaubt die zweidimensionale Strukturierung dünner Schichten mit extrem hohen Geschwindigkeiten von einigen hundert Metern pro Sekunde. Auf dem Fraunhofer-Gemeinschaftsstand Halle 3/G22 der European Photovoltaic Solar Energy Conference and Exhibition, kurz EU PVSEC, in Frankfurt vom 24. - 28. September 2012 präsentiert das Fraunhofer ILT dem Fachpublikum den Demonstrator dieses Polygonscanners. In Kombination mit modernen Strahlquellen mit hohen Repetitionsraten kann er den Durchsatz in der Produktion signifikant erhöhen. Der Polygonscanner lässt sich sowohl für die Bearbeitung von Dünnschicht-Solarmodulen als auch von kristallinen Solarzellen einsetzen.

Serienverschaltung für starre und flexible Solarmodule

Einen Schwerpunkt der Forschungsaktivitäten am Fraunhofer ILT bildet neben der Maschinentechnik die Weiterentwicklung von Strukturierungsprozessen für Dünnschicht-Solarmodule. Diese erfordern eine Serienverschaltung kleiner Zellstreifen, damit die Stromdichten reduziert werden können, was wiederum elektrische Verluste innerhalb des Moduls verringert. Was vielfach noch durch mechanisches Ritzen erzielt wird, kann mittels Laserstrahlung schneller und sauberer erreicht werden. Die Herausforderung für die ILT-Forscher besteht nun darin, die zwischen einigen Nanometern und wenigen Mikrometern dünnen Schichten leitender, halbleitender oder isolierender Materialien in Ihrer Funktionalität nicht zu beeinträchtigen. Denn aufgrund der sehr geringen Schichtdicken können bei der Bearbeitung beispielsweise Rückstände des abgetragenen Materials oder thermische Schädigung benachbarter Bereiche zur Degradierung der Schicht führen und somit das gesamte Solarmodul seiner Funktion beraubt werden. Die Laserstrukturierungsprozesse müssen deswegen an die unterschiedlichen Eigenschaften jeder Einzelschicht individuell angepasst werden. Der Einsatz von Ultrakurzpulslasern ermöglicht hierbei physikalische Prozesse, welche mit größeren Pulsdauern nicht möglich sind. Dadurch eröffnen sich neue Prozessfenster und neue industrietaugliche Prozesse werden realisierbar.
Im Projekt Flexlas, gefördert durch die Europäische Kommission und das Land Nordrhein-Westfalen, wird am Fraunhofer ILT ein Laserstrukturierungsverfahren für organische Solarzellen auf flexiblen Foliensubstraten entwickelt. Dieser Art von Solarmodulen gilt als kostengünstiges und zukunftsweisendes Produkt im Bereich der Solarenergie. Künftig sind Textilien oder Handtaschen mit biegsamen Solarzellen denkbar, an denen sich ein Mobiltelefon aufladen lässt. Die in Aachen entwickelten Laserstrukturierungsprozesse lassen sich auch auf weitere Produkte mit Mehrschichtsystemen anwenden wie Bildschirme für Smartphones oder flache Beleuchtungselemente.

Produktionstechnik für kristalline Solarzellen

In Forschung und Entwicklung wird derzeit an einer Vielzahl von Laserprozessen für die Herstellung von kristallinen Solarzellen gearbeitet. So lassen sich zum Beispiel mit einem am Fraunhofer ILT entwickelten Verfahren 10.000 Bohrungen pro Sekunde und mehr in Siliziumwafern erzeugen. Dünne Passivierungsschichten lassen sich nahezu ohne Beeinflussung der elektrischen Funktionalität entfernen und laserbasierte Modulherstellung ermöglicht Lötzeiten von unter einer Sekunde durch innovative Strahlformungsoptiken.

Hier kann der Einsatz der richtigen Strahlquelle den Produktionsprozess erheblich verbessern. ILT-Forscher erproben derzeit eine Vielzahl von Strahlquellen, um möglichst große Parameterbereiche in Bezug auf Pulsdauer, Wellenlänge, prozessangepasste Strahlverteilung usw. abzudecken und laserinduzierte Schädigungen zu minimieren.

Des Weiteren arbeiten die Aachener Wissenschaftler an neuartigen Ansätzen zur Produktion von Hocheffizienzzellen. Für die Erzeugung einer reflexionsmindernden Textur, welche die maximale Ausnutzung des Sonnenlichts unterstützt, wird hier ein abtragsfreier Laserprozess mit einem nachträglichen Ätzschritt kombiniert, um die laserinduzierte Materialschädigung auf ein Minimum zu reduzieren und die Prozessgeschwindigkeit zu maximieren. Dies trägt wiederum zu einer signifikanten Reduktion der Produktionskosten bei.

Ansprechpartner

Dr. Malte Schulz-Ruthenberg | Gruppe Mikro- und Nanostrukturierung | Telefon +49 241 8906-604 | malte.schulz-ruhtenberg@ilt.fraunhofer.de | Fraunhofer-Institut für Lasertechnik ILT, Aachen | www.ilt.fraunhofer.de

Dr. Alexander Olowinsky | Leiter Gruppe Mikrofügen | Telefon +49 241 8906-491 | alexander.olowinsky@ilt.fraunhofer.de | Fraunhofer-Institut für Lasertechnik ILT, Aachen

Axel Bauer | Fraunhofer-Institut
Weitere Informationen:
http://www.ilt.fraunhofer.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Phänomenologisches Berechnungskonzept verkürzt das Auslegen von Spritzgussformteilen
13.08.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Nachweis von Mikroplastik im Wasser: Fraunhofer CSP entwickelte smarte Filteranlagen
02.08.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Arctic Ocean 2018 - Forscher untersuchen Wolken und Meereis in der Arktis

"Arctic Ocean 2018": So heißt die diesjährige Forschungsexpedition des schwedischen Eisbrechers ODEN in der Arktis, an der auch ein Wissenschaftler der Universität Leipzig beteiligt ist. Noch bis zum 25. September wollen die etwa 40 Forscher an Bord vor allem das mikrobiologische Leben im Ozean und im Meereis untersuchen und wie es mit der Wolkenbildung in der Arktis zusammenhängt.

Während der Fahrt durch die Arktis, die Ende Juli gestartet ist, sollen im Rahmen der Kampagne MOCCHA 2018 (Microbiology-Ocean-Cloud-Coupling in the Hight...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

Herausforderung China – Wissenschaftler aus der ganzen Welt diskutieren miteinander auf UW/H-Tagung

03.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltkleinster Transistor schaltet Strom mit einzelnem Atom in festem Elektrolyten

13.08.2018 | Energie und Elektrotechnik

Your Smartphone is Watching You: Gefährliche Sicherheitslücken in Tracker-Apps

13.08.2018 | Informationstechnologie

Was wir von Ameisen und Amöben über Koordination und Zusammenarbeit lernen können

13.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics