Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektrodenmaterialien aus der Mikrowelle

18.10.2017

Neues Verfahren zur Synthese von Hochvolt-Kathoden für Lithiumionen-Akkus

Power für unterwegs ist gefragt: Je leistungsfähiger der Akku, desto größer die Reichweite von Elektroautos und desto länger die Betriebszeit von Handys und Laptops. Dr. Jennifer Ludwig von der Technischen Universität München (TUM) hat ein Verfahren entwickelt, mit dem sich das vielversprechende Hochvolt-Kathodenmaterial Lithium-Kobaltphosphat schnell, einfach, günstig und in höchster Qualität herstellen lässt. Für ihre Arbeit erhielt die Chemikerin den Evonik Forschungspreis.


Pinkfarbenes, mikrokristallines Lithium-Kobaltphosphat-Pulver.

Foto: Andreas Battenberg / TUM


Elektronenmikroskopische Aufnahme der plättchförmigen Lithium-Kobaltphosphat-Kristalle

Bild: Katia Rodewald / TUM

Die Hoffnung ist pink: Das Pulver, das Jennifer Ludwig vorsichtig in eine Glasschale schüttet und das im Licht der Laborlampe rosarot leuchtet, hat das Potenzial, Akkus in Zukunft noch leistungsfähiger zu machen. „Das Lithium-Kobaltphosphat kann erheblich mehr Energie speichern als herkömmliche Kathodenmaterialien“, erklärt die Chemikerin.

Die Mitarbeiterin von Tom Nilges, Inhaber der Professur für Synthese und Charakterisierung innovativer Materialien, hat ein Verfahren entwickelt, mit dem sich das pinke Pulver schnell, mit geringem Energieaufwand und in bester Qualität herstellen lässt.

Lithium-Kobaltphosphat gilt unter Batterieforschern seit einiger Zeit als Material der Zukunft. Es arbeitet bei höherer Spannung als das bisher verwendete Lithium-Eisenphosphat und erreicht daher eine höhere Energiedichte – 800 Wattstunden pro Kilogramm statt bisher knapp 600 Wattstunden.

Bisherige Verfahren: teuer und energieaufwändig

Bisher war die Herstellung des vielversprechenden Hochvolt-Kathodenmaterials jedoch aufwändig, energieintensiv und wenig effizient: Man benötigte drastische Bedingungen mit Temperaturen von 900 Grad.

„Die Kristalle, die sich unter diesen extremen Bedingungen bilden, sind zudem unterschiedlich groß und müssen in einem zweiten energieintensiven Schritt erst zu nanokristallinem Pulver vermahlen werden“, berichtet Ludwig.

Die entstehenden Körnchen besitzen zudem nur in einer Richtung genügend ionische Leitfähigkeit. Auf dem größten Teil der Oberfläche läuft die chemische Reaktion zwischen Elektrodenmaterial und Elektrolyt im Akku nur schleppend ab.

Kristalle nach Maß

Die von Jennifer Ludwig entwickelte Mikrowellen-Synthese löst all diese Probleme auf einen Schlag: Für die Gewinnung von hochreinem Lithium-Kobaltphosphat benötigt man nur ein kleines Mikrowellen-Gerät und eine halbe Stunde Zeit.

Die Reagenzien werden zusammen mit einem Lösungsmittel in einem Teflon-Behälter erhitzt. Gerade einmal 600 Watt Leistung reichen aus, um die notwendige Temperatur von 250 Grad zu erzeugen und die Kristallbildung anzuregen.

Die sich dabei bildenden flachen Plättchen haben einen Durchmesser von weniger als einem Mikrometer, eine Dicke von wenigen hundert Nanometern, und die Achse höchster Leitfähigkeit ist in Richtung Oberfläche orientiert. „Diese Form sorgt für eine bessere elektrochemische Leistungsfähigkeit, weil die Lithium-Ionen nur kurze Wege im Kristall zurücklegen müssen“, erläutert Ludwig.

Gezielte Steuerung der Reaktion

Und noch ein weiteres Problem konnte die Chemikerin bei ihren Experimenten lösen: Bei Temperaturen von über 200 Grad und unter hohem Druck entsteht mitunter nicht das gewünschte Lithium-Kobaltphosphat, sondern ein bisher unbekanntes, komplexes Kobalt-Hydroxid-Hydrogenphosphat.

Jennifer Ludwig gelang es, den Reaktionsweg aufzuklären, die chemische Verbindung zu isolieren und dessen Struktur und Eigenschaften zu bestimmen. Da die neue Verbindung als Batteriematerial ungeeignet ist, modifizierte sie die Reaktionsbedingungen so, dass nur das gewünschte Lithium-Kobaltphosphat entsteht.

„Mit dem neuen Herstellungsverfahren können wir nun in einem einzigen Prozessschritt die leistungsfähigen, plättchenförmigen Lithium-Kobaltphosphat-Kristalle maßgeschneidert und in hoher Qualität herstellen“, urteilt Professor Nilges. „Damit ist eine weitere Hürde auf dem Weg zu neuen Hochvolt-Materialien überwunden.“

Unterstützt wurde Jennifer Ludwigs Arbeit von der TUM Graduate School, BMW, sowie dem Fonds der Chemischen Industrie. Die Untersuchung elektrochemischer Eigenschaften erfolgte in Kooperation mit dem Lehrstuhl für Technische Elektrochemie der TU München. Struktur und Eigenschaften des komplexen Kobalt-Hydroxid-Hydrogenphosphats wurden in Zusammenarbeit mit dem Lawrence Berkeley National Laboratory (LBNL), der Stanford Synchrotron Radiation Lightsource (SSRL) und dem Walther-Meißner-Institut (WMI) untersucht. Für die Entwicklung ihres neuen Synthese-Verfahrens erhielt Jennifer Ludwig den Evonik-Forschungspreis, den der Chemie-Konzern jährlich an herausragende Nachwuchswissenschaftler vergibt.

Publikationen:

Co11Li[(OH)5O][(PO3OH)(PO4)5], a Lithium-Stabilized, Mixed-Valent Cobalt(II,III) Hydroxide Phosphate Framework;
Jennifer Ludwig, Stephan Geprägs, Dennis Nordlund, Marca M. Doeff, and Tom Nilges;
Inorg. Chem., 2017, 56 (18), pp 10950–10961 – DOI: 10.1021/acs.inorgchem.7b01152
http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b01152

Morphology-controlled microwave-assisted solvothermal synthesis of high-performance LiCoPO4 as a high-voltage cathode material for Li-ion batteries;
Jennifer Ludwig, Cyril Marino, Dominik Haering, Christoph Stinner, Hubert A.Gasteiger, Tom Nilges.
Journal of Power Sources, Vol. 342, 28 February 2017, Pages 214-223
http://www.sciencedirect.com/science/article/pii/S0378775316317554

Kontakt

Prof. Dr. Tom Nilges
Technische Universität München
Professur für Synthese und Charakterisierung innovativer Materialien
Lichtenbergstraße 4, 85747 Garching, Germany
Tel.: +49 89 289-13111 – E-Mail: tom.nilges@lrz.tum.de – Web: www.acinnomat.ch.tum.de

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34233/ Link zur Pressemitteilung
https://mediatum.ub.tum.de/1398305 Link zu Bildermaterial

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Bionik im Leichtbau
17.08.2018 | Technische Hochschule Mittelhessen

nachricht Phänomenologisches Berechnungskonzept verkürzt das Auslegen von Spritzgussformteilen
13.08.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dialog an Deck, Science Slam und Pong-Battle

21.08.2018 | Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zukünftige Informationstechnologien: Wärmetransport auf der Nanoskala unter die Lupe genommen

21.08.2018 | Physik Astronomie

Bedeutung des „Ozeanwetters“ für Ökosysteme

21.08.2018 | Biowissenschaften Chemie

Auf dem Weg zur personalisierten Medizin

21.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics