Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Quantenpunkt-Mikroskop zeigt die elektrischen Potenziale einzelner Atome

11.06.2019

Ein Forscherteam aus Jülich hat in Kooperation mit der Universität Magdeburg eine neue Methode entwickelt, mit der sich die elektrischen Potenziale einer Probe atomgenau vermessen lassen. Mit etablierten Verfahren war es bisher kaum möglich, die elektrischen Potenziale, die sich in der unmittelbaren Nähe einzelner Moleküle oder Atome ausbilden, quantitativ zu erfassen. Das neue Verfahren der Raster-Quantenpunkt-Mikroskopie, das die Wissenschaftler gemeinsam mit Partnern weiterer Einrichtungen in der Fachzeitschrift Nature Materials vorgestellt haben, könnte neue Möglichkeiten eröffnen für die Chipfertigung oder für die Charakterisierung von Biomolekülen wie der DNA.

Die positiven Atomkerne und negativen Elektronen, aus denen alle Materie besteht, erzeugen elektrische Potenzialfelder, die sich schon auf sehr kurzen Distanzen überlagern und ausgleichen.


Dr. Christian Wagner vom Jülicher Peter Grünberg Institut mit einem Modell des PTCDA-Moleküls, das bei der neuen Methode als Quantenpunkt dient.

Copyright: Forschungszentrum Jülich / Sascha Kreklau


Aufnahme eines Rastertunnel-Mikroskops (STM, links) und eines Raster-Quantenpunkt-Mikroskops (SQDM, rechts): Mit Rastertunnel-Mikroskope lässt sich die physische Struktur einer Oberfläche atomgenau vermessen. Die Quantenpunkt-Mikroskopie kann bei ähnlicher Detailtiefe die elektrischen Potenziale auf der Oberfläche abbilden. Eine perfekte Kombination.

Copyright: Forschungszentrum Jülich / Christian Wagner

Mit herkömmlichen Verfahren war es bisher kaum möglich, diese kleinräumigen Felder zu vermessen, die für viele stoffliche Eigenschaften und Funktionalitäten auf der Nanoskala verantwortlich sind. Praktisch alle etablierten Verfahren, die solche Potenziale abbilden, beruhen auf einer Messung der Kräfte, die durch elektrische Ladungen hervorgerufenen werden.

Doch diese Kräfte lassen sich nur schwer von anderen Kräften unterscheiden, die auf der Nanoskala auftreten, was einer quantitativen Messung im Wege steht.

Vor vier Jahren entdeckten Wissenschaftler des Forschungszentrums Jülich jedoch eine Methode, die auf einem völlig anderen Prinzip basiert. Bei der Raster-Quantenpunkt-Mikroskopie wird ein einzelnes organisches Molekül, der Quantenpunkt, auf die Spitze eines Rasterkraftmikroskops geheftet und dient dann als Sonde.

„Das Molekül ist so klein, dass man kontrolliert einzelne Elektronen aus der Spitze des Rasterkraftmikroskops auf das Molekül aufbringen kann“, erklärt Christian Wagner, Leiter der Gruppe „Controlled Mechanical Manipulation of Molecules“ am Jülicher Peter Grünberg Institut (PGI-3).

Die Forscher hatten das Potenzial der Methode sofort erfasst und einen Patentantrag gestellt. Doch bis zur praktischen Anwendung war es noch ein weiter Weg.

„Anfangs war es nur ein überraschender Effekt, aber in seiner Anwendbarkeit begrenzt. Das ist jetzt anders. Wir können die elektrischen Felder einzelner Atome und Moleküle nicht nur sichtbar machen. Wir können diese jetzt auch präzise quantifizieren“, erläutert Christian Wagner.

„Das hat auch der Vergleich mit theoretischen Rechnungen unserer Kollegen aus Luxemburg belegt. Darüber hinaus können wir große Bereiche einer Probe und somit verschiedenste Nanostrukturen auf einen Schlag abbilden. Für ein detailliertes Bild benötigen wir gerade einmal eine Stunde.“

Jahrelang haben die Jülicher Forscher die Methode untersucht und am Ende eine in sich geschlossene Theorie dazu entwickelt. Der Grund für die sehr scharfen Bilder ist ein Effekt, der es ermöglicht, dass die Mikroskopspitze für die Messung relativ weit von der Probe entfernt sein kann, etwa 2 bis 3 Nanometer – unvorstellbar für ein normales Rasterkraftmikroskop.

Dazu muss man wissen: Alle Elemente einer Probe erzeugen elektrische Felder, die auf den Quantenpunkt einwirken und damit auch gemessen werden. Die Mikroskopspitze wirkt dabei wie ein Schutzschirm, der die störenden elektrischen Felder der weit entfernten Probenbereiche dämpft.

„Der Einfluss der abgeschirmten elektrischen Felder fällt so exponentiell ab und der Quantenpunkt detektiert nur den unmittelbar umliegenden Bereich“, erklärt Wagner. „Unsere Auflösung ist dadurch viel schärfer als es selbst bei einer idealen Punktsonde zu erwarten wäre.“

Dass die Vermessung der kompletten Probenoberfläche so schnell vonstattengeht, verdanken die Jülicher Forscher ihren Partnern von der Otto-von-Guericke-Universität Magdeburg. Die Ingenieure entwickelten den Controller, der dazu beiträgt, die komplexe, mehrfache Abtastung der Probe zu automatisieren.

„Ein Rasterkraftmikroskop funktioniert ein bisschen wie ein Plattenspieler“, erklärt Wagner. „Die Spitze fährt über die Probe und erstellt so Stück für Stück eine zusammenhängende Darstellung der Oberfläche. Bei der Raster-Quantenpunkt-Mikroskopie mussten wir bisher jedoch an eine Stelle der Probe fahren, ein Spektrum messen, zur nächsten Stelle fahren, ein Spektrum messen und so weiter, um daraus ein Bild zusammenzusetzen. Mit dem Controller der Magdeburger können wir jetzt die ganze Fläche einfach scannen, wie mit einem normalen Rasterkraftmikroskop. Während wir bisher 5 bis 6 Stunden für ein einzelnes Molekül benötigt haben, können wir jetzt Probenbereiche mit Hunderten Molekülen in einer Stunde abbilden.“

Einige Nachteile hat die Quantenpunkt-Methode allerdings noch. Die Vorbereitung der Messungen ist sehr aufwändig. Das Molekül, das als Quantenpunkt für die Messung dient, muss vor der Messung von der Spitze aufgehoben werden – etwas, was nur im Vakuum und bei tiefen Temperaturen möglich ist.

Normale Rasterkraftmikroskope dagegen arbeiten auch bei Raumtemperatur, ohne Vakuum, und es sind keine anspruchsvollen Vorbereitungen nötig.
Trotzdem, Prof. Stefan Tautz, Direktor des PGI-3, ist optimistisch: „Das muss unsere Möglichkeiten nicht einschränken. Unsere Methode ist noch neu und wir sind gespannt auf die ersten Projekte, mit denen wir zeigen können, was das Verfahren wirklich leisten kann.“

Einsatzmöglichkeiten für die Quantenpunkt-Mikroskopie gibt es viele. Die Halbleiterelektronik stößt in Größenbereiche vor, bei denen schon ein einzelnes Atom für die Funktionalität entscheidend sein kann. Und auch für andere Funktionsmaterialien, etwa Katalysatoren, spielen elektrostatische Wechselwirkungen eine wichtige Rolle.

Die Charakterisierung von Biomolekülen wäre eine andere Option. Aufgrund des vergleichsweise großen Abstands zur Probe eignet sich das Verfahren auch für raue Oberflächen, wie sie etwa das DNA-Molekül mit seiner charakteristischen 3D-Struktur aufweist.

Originalpublikation:
Quantitative imaging of electric surface potentials with single-atom sensitivity
Christian Wagner, Matthew. F. B. Green, Michael Maiworm, Philipp Leinen, Taner Esat, Nicola Ferri, Niklas Friedrich, Rolf Findeisen, Alexandre Tkatchenko, Ruslan Temirov, F. Stefan Tautz
Nature Materials (published online 10 June 2019), DOI: 10.1038/s41563-019-0382-8

Ansprechpartner:
Dr. Christian Wagner, ERC-StG Gruppe " Controlled Mechanical Manipulation of Molecules ” am Peter Grünberg Institut, Functional Nanostructures at Surfaces (PGI-3)
Tel. +49 2461 61-3538
E-Mail: c.wagner@fz-juelich.de

Pressekontakt:
Tobias Schlößer, Unternehmenskommunikation
Tel. +49 2461 61-4771
E-Mail: t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich GmbH
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Wasserdicht dank flinker Laser
27.05.2019 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Aluminium und Kupfer: Eine besondere Verbindung zur Effizienzsteigerung von elektrischen Antrieben
27.05.2019 | Fraunhofer IFAM

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

Globalisierung und Klimawandel sind zwei der großen Herausforderungen für die Luftfahrt. Der »European Flightpath 2050 – Europe’s Vision for Aviation« der Europäischen Kommission für Forschung und Innovation sieht für Europa eine Vorreiterrolle bei der Vereinbarkeit einer angemessenen Mobilität der Fluggäste, Sicherheit und Umweltschutz vor. Dazu müssen sich Design, Fertigung und Systemintegration weiterentwickeln. Einen vielversprechenden Ansatz bietet eine wissenschaftliche Kooperation in Aachen.

Das Fraunhofer-Institut für Produktionstechnologie IPT und der Lehrstuhl für Digital Additive Production DAP der RWTH Aachen entwickeln zurzeit eine...

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Meilenstein für starke Zusammenarbeit: Neuer Standort für Rittal und Eplan in Italien

19.06.2019 | Unternehmensmeldung

Katalyse: Hohe Reaktionsraten auch ohne Edelmetalle

19.06.2019 | Biowissenschaften Chemie

Wie sich Bakterien gegen Plasmabehandlung schützen

19.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics