Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

11.12.2017

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck


Blick in die offene Hälfte einer Diamantstempelzelle. Darunter ist ein Trimmer-Kondensator (grün) befestigt.

Foto: Thomas Meier

Die geo- und materialwissenschaftliche Hochdruckforschung ist dafür bekannt, völlig unerwartete und faszinierende Phänomene zu entdecken: Unter extrem hohen Drücken verwandeln sich Materialien, die normalerweise keinen elektrischen Strom leiten, zu Supraleitern; scheinbar einfach aufgebaute Festkörper nehmen plötzliche hoch komplexe Kristallstrukturen an; kleinste Elementarteilchen wie Elektronen und Protonen zeigen unvorhersagbare Eigenschaften.

Zu den weltweit führenden Zentren der Hochdruckforschung zählt das Bayerische Geoinstitut (BGI) der Universität Bayreuth. 2016 hat ein Forschungsteam des BGI bei materialwissenschaftlichen Experimenten erstmals einen Druck von mehr als einem Terapascal erzeugt – dreimal höher als der Druck, der im Zentrum der Erde herrscht. Diese hohen Drücke werden auf kleinstem Raum in Diamantstempelzellen erzeugt. Darin wird die Materialprobe zwischen den Köpfen zweier Diamanten platziert, die einander exakt gegenüber liegen und gemeinsam einen extrem hohen Druck auf das Material ausüben.

Röntgenkristallographische Verfahren haben auf diese Weise immer wieder zu überraschenden Erkenntnissen über Strukturen und Verhaltensweisen von Materie geführt. Allerdings konnte die NMR-Spektroskopie, die beispielsweise sehr erfolgreich zur Aufklärung der Strukturen und Interaktionen von Biomolekülen angewendet wird, in der Hochdruckforschung bisher nicht eingesetzt werden. Eine technische Hürde stand im Weg: Es war bisher kaum möglich, die für die NMR wichtigen Magnetfelder auf die winzigen Proben in der Diamantstempelzelle zu fokussieren und die dadurch erzeugten Signale zu messen.

Magnetische Linsen, kombiniert mit Diamanten

Im August 2017 aber veröffentlichten Wissenschaftler des Instituts für Mikrostrukturtechnik am KIT eine neue Methode, die es erlaubt, die NMR-Spektroskopie für hochpräzise Untersuchungen auf kleinstem Raum einzusetzen. Hierfür haben sie magnetische Linsen, die nach dem deutschen Physiker Emil Lenz (1804 - 1865) als Lenz-Linsen bezeichnet werden, entsprechend weiterentwickelt.

„Diese Forschungsergebnisse aus Karlsruhe haben bei uns in Bayreuth sofort die Überlegung ausgelöst, ob sich Lenz-Linsen in den Diamantstempelzellen so installieren lassen, dass sie NMR-Experimente unter hohen Drücken ermöglichen“, berichtet der Bayreuther Hochdruckforscher Prof. Dr. Leonid Dubrovinsky. Gemeinsam mit Dr. Sylvain Petitgirard und Dr. Thomas Meier vom BGI hat er mit dem Karlsruher Forschungsteam um Prof. Dr. Jan Korvink Kontakt aufgenommen.

In kurzer Zeit gelang es durch intensive Zusammenarbeit, die Diamanten in den Stempelzellen mit den neuen Lenz-Linsen so zu kombinieren, dass die in den Zellen eingeschlossenen Materialproben NMR-spektroskopisch untersucht werden können. In ersten Experimenten wurden die Proben Drücken von 72 Giga-Pascal (720.000 bar) ausgesetzt, wie sie im unteren Erdmantel herrschen.

Neue Perspektiven für Forschung und Innovationen

„Das Portfolio der röntgenkristallographischen Verfahren, die uns bisher für die geo- und materialwissenschaftliche Hochdruckforschung zur Verfügung standen, wird durch die NMR-Spektroskopie jetzt erheblich erweitert. Die möglichen Anwendungsfelder sind noch gar nicht absehbar. Wir können jetzt das Verhalten von Elektronen und Atomkernen in physikalisch und geologisch wichtigen Systemen mit einer viel höheren Präzision untersuchen als bisher“, erklärt Dubrovinsky. „Diese Erkenntnisse können innovative Entwicklungen, beispielsweise in der Energie- oder der Medizintechnik, voranbringen. Vielleicht werden sie uns eines Tages auch dabei helfen, das große Rätsel zu klären, wie das Leben auf der Erde entstanden ist“, meint der Bayreuther Wissenschaftler.

NMR-Spektroskopie an der Universität Bayreuth

Die magnetische Kernresonanzspektroskopie wird an der Universität Bayreuth sowohl in der physikalischen als auch in der strukturbiologischen Forschung eingesetzt. Auf dem Bayreuther Campus befindet sich das weltweit leistungsfähigste NMR-Spektrometer. Es handelt sich um ein hochauflösendes Spektrometer der Feldstärke 23,4 Tesla, dies entspricht einer Protonenresonanzfrequenz von einem GHz. Der Lehrstuhl für Biopolymere, das Forschungszentrum für Bio-Makromoleküle sowie die ALNuMed setzen die NMR-Spektroskopie in enger Kooperation auf vier Forschungsfeldern ein: HIV/Aids, Antibiotika, Allergene und Lebensmittelanalytik.

Veröffentlichung:

Thomas Meier, Nan Wang, Dario Mager, Jan G. Korvink, Sylvain Petitgirard and Leonid Dubrovinsky, Magnetic flux tailoring through Lenz lenses for ultrasmall samples: A new pathway to high-pressure nuclear magnetic resonance, Science Advances, 8 Dec 2017, Vol. 3, no. 12, DOI: 10.1126/sciadv.aao5242

Interview mit Dr. Thomas Meier, Universität Bayreuth, in “Welt der Physik”:
http://www.weltderphysik.de/gebiet/stoffe/news/2017/kernspinresonanz-unter-hochd...

Kontakt:

Prof. Dr. Leonid Dubrovinsky
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
Universitätsstr. 30
95447 Bayreuth
Telefon: +49 (0)921 / 55 -3736 oder -3707
E-Mail: Leonid.Dubrovinsky@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Verkalkte Zähne retten
19.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht Uhrenbestandteile aus Diamant
18.06.2018 | Schweizerischer Nationalfonds SNF

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics