Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nachweis von Mikroplastik im Wasser: Fraunhofer CSP entwickelte smarte Filteranlagen

02.08.2018

Mikroplastikpartikel im Wasser sind ein zunehmendes Problem für die Umwelt. Ein neues Filtersystem, mit dem sich die Belastung von Gewässern schneller und einfacher messen lässt, entwickelt das Fraunhofer-Center für Silizium-Photovoltaik CSP gemeinsam mit Partnern. Das Forschungsprojekt unter Federführung der Bundesanstalt für Materialforschung und -prüfung (BAM) will eine Datenbasis schaffen, um die Belastung von Gewässern analysieren und anschließend verringern zu können.

Der Eintrag von Mikroplastikpartikeln – also Plastikteilchen mit einer Größe von weniger als 1 Millimeter – in unser Ökosystem wird zunehmend problematischer. Doch wie gelangt Mikroplastik in Gewässer und Abwässer? Und wie kann es dort untersucht und nachgewiesen werden? Momentan fehlt eine verlässliche, wissenschaftliche Datenbasis über die Quellen, das Vorkommen sowie die Auswirkungen von Mikroplastikpartikeln auf die Umwelt.


MakroPor, makroporöses Silizium, hält Mikroplastikpartikel zurück.

SmartMembranes GmbH


Lichtmikroskopische Aufnahme eines prototypischen Silizium-Filters nach der Laser-Mikrobearbeitung mit Porengrößen im Bereich von 50 µm Durchmesser.

Fraunhofer CSP

Das Forschungsprojekt »Repräsentative Untersuchungsstrategien für ein integratives Systemverständnis von spezifischen Einträgen von Kunststoffen in die Umwelt (RUSEKU)«, das von der Bundesanstalt für Materialforschung und -prüfung (BAM) ins Leben gerufen wurde, will bis zum Jahr 2021 ein Untersuchungsverfahren entwickeln, mit dem sich der Partikeleintrag in Gewässer einheitlich und schneller messen lässt. Dadurch soll sich auch feststellen lassen, an welchen Orten eine besonders hohe Belastung von Gewässern durch Mikroplastik vorliegt.

Das Fraunhofer-Center für Silizium-Photovoltaik CSP entwickelt im Rahmen des Verbundforschungsprojektes gemeinsam mit der SmartMembranes GmbH ein spezielles Filtersystem als wichtigen Baustein für ein einheitliches und unkompliziertes Verfahren zur Entnahme von Proben. Die Kaskaden-Filtrationsanlage soll spezielle Siliziumfilter mit definierten Lochdichten und -größen einsetzen, in denen die Plastikpartikel hängen bleiben.

»Wesentlich für tragfähige Aussagen über die Mengen von Mikroplastik im Grund-, Trink- sowie Schmutzwasser oder in Oberflächengewässern ist die Methodik für die Probenentnahme. Geplant ist eine Art Probenentnahme-Set, das dazu einen entscheidenden Beitrag leisten soll«, sagt Dr. Christian Hagendorf, der auf Seiten des Fraunhofer CSP für das Forschungsprojekt verantwortlich ist.

»Mithilfe von Laser- und chemischen Ätzprozessen werden wir auf dem Siliziumträger passende Lochgrößen schaffen, in denen die Partikel zurückgehalten werden. Bei der späteren Analyse im Labor machen wir uns die chemische Zusammensetzung von Silizium zunutze, das in einem breiten Wellenlängenbereich des Infrarotlichtes im Transmissionsverfahren durchsichtig ist und darauf liegende Mikroplastikteilchen für die spektroskopische Messtechnik sichtbar macht«, sagt Hagendorf weiter.

Eine weitere wichtige Kenngröße für die Qualität der Filter ist die mechanische Festigkeit. Denn Lastzustände, die durch Wasserströmungen während der Probenentnahme verursacht werden, dürfen nicht zum Bruch der Filter führen. Außerdem müssen die Filter eine »smarte«, optimierte Lochgeometrie und Oberflächenbeschaffenheit besitzen.

Ein weiteres Arbeitsziel ist es, zusammen mit den Partnern einen vorgeschriebenen Arbeitsablauf von der Probenahme über die Aufreinigung bis zur Analyse der Mikroplastikpartikel zu definieren. Durch »Smart Sampling« wird der Nachweis von Mikroplastik von der Probenahme bis zur Schnellanalytik perfekt abgestimmt.

Das damit ermöglichte Verfahren zur effizienten und zuverlässigen Mikroplastik-Probenentnahme bietet eine Grundlage für Strategien und Regelungen, die helfen, Mikroplastik im Wasserkreislauf zu verringern. Das Verbundforschungsprojekt wird vom Bundesministerium für Bildung und Forschung (BMBF) gefördert und findet im Rahmen des Forschungsschwerpunktes »Plastik in der Umwelt« statt. Beteiligt sind neben dem Fraunhofer CSP sechs weitere wissenschaftliche Einrichtungen sowie drei mittelständische Unternehmen.

Über das Fraunhofer-Center für Siliziumphotovoltaik CSP

Das Fraunhofer CSP betreibt angewandte Forschung in den Themengebieten der Siliziumkristallisation, Waferfertigung, Solarzellencharakterisierung und der Modultechnologie. Es entwickelt dabei neue Technologien, Herstellungsprozesse und Produktkonzepte entlang der gesamten photovoltaischen Wertschöpfungskette.

Schwerpunkte sind die Zuverlässigkeitsbewertung von Solarzellen und Modulen unter Labor- und Einsatzbedingungen sowie die elektrische, optische, mechanische und mikrostrukturelle Material- und Bauteilcharakterisierung. Basierend auf dem Verständnis von Ausfallmechanismen werden dadurch Messmethoden, Geräte und Fertigungsprozesse für Komponenten und Materialien mit erhöhter Zuverlässigkeit entwickelt.

Ergänzt wird das Portfolio der Photovoltaik durch Forschungen im Bereich der regenerativen Wasserstofferzeugung, -Speicherung und -Nutzung, hierbei insbesondere der Entwicklung, Charakterisierung und Testung neuer Materialien für Brennstoffzellen und Elektrolyseure sowie der Simulationen und der Wirtschaftlichkeitsbetrachtungen von dezentralen Photovoltaik-Elektrolysesystemen.

Das Fraunhofer CSP ist eine gemeinsame Einrichtung des Fraunhofer-Instituts für Mikrostruktur von Werkstoffen und Systemen IMWS und des Fraunhofer-Instituts für Solare Energiesysteme ISE.

Über die SmartMembranes GmbH

SmartMembranes, im Jahr 2009 von Dr. Petra Göring und Monika Lelonek in Halle (Saale) gegründet, ist der weltweit führende Hersteller von porösen hochgeordneten Materialien aus Aluminiumoxid und Silizium mit definiert einstellbaren Membraneigenschaften und Strukturparametern für eine Vielzahl von innovativen Anwendungen. Ein weiteres wichtiges Standbein neben der Produktion der Membrane nach Kundenwunsch ist die Entwicklung neuer Prozesse und Produkte rund um das Kerngeschäft.

Die SmartMembranes GmbH ist ein Spin-Off des Fraunhofer-Instituts für Mikrostruktur von Werkstoffen und Systemen IMWS in Halle. Die am Standort – dem Technologie- und Gründerzentrum Halle – vorhandene Infrastruktur mit einer Vielzahl an F&E-Einrichtungen wie der Martin-Luther-Universität Halle-Wittenberg, dem Max-Plack-Institut für Mikrostrukturphysik und dem Fraunhofer IMWS ermöglichen eine enge Zusammenarbeit, Kooperation und Vernetzung.

Wissenschaftliche Ansprechpartner:

Dr. Christian Hagendorf, Telefon +49 345 5589-5100, christian.hagendorf@csp.fraunhofer.de

Weitere Informationen:

https://www.imws.fraunhofer.de/de/presse/pressemitteilungen/filteranlage-mikropl...

Michael Kraft | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Bionik im Leichtbau
17.08.2018 | Technische Hochschule Mittelhessen

nachricht Phänomenologisches Berechnungskonzept verkürzt das Auslegen von Spritzgussformteilen
13.08.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dialog an Deck, Science Slam und Pong-Battle

21.08.2018 | Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zukünftige Informationstechnologien: Wärmetransport auf der Nanoskala unter die Lupe genommen

21.08.2018 | Physik Astronomie

Bedeutung des „Ozeanwetters“ für Ökosysteme

21.08.2018 | Biowissenschaften Chemie

Auf dem Weg zur personalisierten Medizin

21.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics