Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliches Blatt zur Wasserstoffherstellung

11.01.2010
Chinesische Forscher: Innovativer Anlauf zur künstlichen Photosynthese

Ein Phänomen, das künstlich nachvollzogen werden soll, könnte die Zukunft der Energieversorgung radikal verändern. Es geht um den Vorgang der Photosythese, den chinesische Forscher auf einem künstlichen Blatt nachahmen wollen. Damit soll Wasser in die zwei Bestandteile Sauerstoff und Wasserstoff geteilt werden.

Das Forscherteam um Tongxiang Fan vom State Key Laboratory of Metal Matrix Composites an der Shanghai Universität will mit seinem Projekt anders an die künstliche Photosynthese herangehen als andere Forscher. Sie versuchen nicht, die Moleküle, die am Vorgang beteiligt sind, nachzubauen, sondern die "Architektur" der grünen Blätter von Pflanzen, berichten sie im Fachmagazin Advanced Materials

Das Geheimnis liegt in der Blattstruktur

Fan und sein Team haben zunächst Blätter der Rebenblättrigen Anemone (Anemone vitifolia) mit Salzsäure behandelt und daraufhin die Magnesiumatome, die einen wesentlichen Anteil der photosynthetischen Maschinerie tragen, gegen Titan ersetzt. Dann wurden die Blätter getrocknet und auf 500 Grad Celsius erhitzt, sodass das übrig gebliebene Blattmaterial weg gebrannt wurde. Übrig geblieben ist ein kristallisiertes Titandioxid-Flechtwerk mit natürlichen Blattstrukturen.

Titandioxid wird heute schon in Solarzellen als "Verstärker" zur Effizienzerhöhung genutzt. In den Blättern wirkt es als Katalysator bei der Aufspaltung der Wassermoleküle. Nachgebaut wurden von den Forschern auch die wie Linsen wirkenden Zellen an der Blattoberfläche, die Licht von jedem Winkel aufnehmen können sowie Venen, die Licht noch tiefer ins Blatt transportieren.

Sehr feine Details nachgebaut

Die künstlichen Blätter enthalten auch sehr feine Nachbildungen der so genannten Thykaloide - das sind Membransysteme, die in den Chloroplasten pflanzlicher Zellen vorkommen und in denen die Lichtreaktion der Photosynthese stattfindet. Diese sind nur rund zehn Nanometer dick. "Genau diese Eigenschaften machen die künstlichen Blätter so effizient bei der Herstellung von Wasserstoff", so Fan.

Die Forscher haben die künstlichen Blätter in eine 20-prozentige Methanollösung getränkt und sie anschließend mit sichtbarem ultraviolettem Licht bestrahlt. Im Vergleich zum kommerziell verfügbaren Titandioxid P25, das zur Herstellung von Wasserstoff in Verwendung ist, absorbierten die künstlichen Blätter mehr als doppelt so viel Licht und gaben mehr als dreimal so viel Wasserstoff ab.

Wolfgang Weitlaner | pressetext.austria
Weitere Informationen:
http://www.sjtu.edu.cn

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Wie bioökonomisch optimierte Ressourcen- und Energiekreisläufe bei der Produktion nachhaltiger Lebensmittel helfen
14.02.2020 | Technische Universität Chemnitz

nachricht Von der Natur für die Creme-Dose: neues Verfahren aus dem LIKAT auf der Basis von Zuckerrohr
31.01.2020 | Leibniz-Institut für Katalyse e. V. an der Universität Rostock

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics