Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kostengünstige Prothesenherstellung durch FDM-Druck

02.10.2014

Der 3D-Druck kommt in zahlreichen Branchen zum Einsatz. Da die Technologien individuelle Produktanforderungen berücksichtigen, werden sie vor allem bei der Herstellung einzelner Bauteile und Prototypen verwendet. Ein weiterer Vorteil ist, dass die Kosten in den letzten Jahren stark gesenkt wurden. Von beiden Faktoren profitiert auch die Medizin- und Orthopädietechnik. Hier ermöglicht die generative Fertigung passgenaue Prothesen und Orthesen zu niedrigen Preisen. Das Fraunhofer-Institut für Produktionstechnik und Automatisierung arbeitet daran, günstige Druckmethoden für die Herstellung von Prothesen zu entwickeln.

Lange Zeit galt der 3D-Druck als ein Privileg großer Firmen oder spezialisierter Dienstleistungsunternehmen. Die Druckverfahren waren komplex, die Maschinen und Materialien teuer. In den vergangenen Jahren wurden jedoch Geräteentwickelt, die mit günstigeren Werkstoff- und Herstellungskosten auskommen.


Mithilfe des FDM-Verfahrens können individuelle Prothesen und Orthesen kostengünstig gedruckt werden.

Quelle: Fraunhofer IPA

Besonders populär ist das Verfahren »Fused Deposition Modelling« (FDM), bei dem das Druckmaterial mit einer frei beweglichen Heizdüse lokal geschmolzen und schichtweise aufgetragen wird. Jannis Breuninger, Abteilung »Biomechatronische Systeme«, sieht im FDM-Druck enorme Potenziale für die Orthopädiebranche.

Da die Maße des Patienten in eine CAD-Software eingegeben werden, entsteht ein eigens auf ihn angepasstes Produkt. »Durch den FDM-Druck ist Individualisierung nicht länger mit hohen Kosten verbunden«, erklärt Breuninger.

Druckverfahren und Geometrie für Prothesenherstellung optimiert

Um mit dem FDM-Verfahren optimierte Prothesen und Orthesen herzustellen, müssen Drucker und Endprodukt genauestens aufeinander abgestimmt werden. In Kooperation mit der Firma »HypeCask« haben die IPA-Wissenschaftler einen speziell an das Druckverfahren angepassten Prothesenfuß entwickelt.

Gleichzeitig bestimmten sie für den 3D-Drucker »Delta Tower« geeignete Druckparameter, wie Materialstärke und Schmelztemperatur. Da der Prothesenfuß hohen mechanischen Belastungen standhalten muss, ist zudem die geometrische Form ausschlaggebend.

»Normalerweise werden beim FDM-Druck Stützstrukturen benötigt. Um Zeit und Kosten zu sparen, haben wir eine Geometrie entwickelt, die auch ohne diesen Zusatz auskommt«, erläutert Breuninger. Der FDM-Druck findet in der Medizintechnik bislang kaum Verwendung. 3D-Drucktechnologien werden hier hauptsächlich in Form von teuren Metallschmelzverfahren, beispielsweise »Selektives Laserschmelzen«, im Bereich der Implantate eingesetzt.

Das Ziel des Fraunhofer IPA ist es, den Herstellungsprozess so weit zu optimieren, dass er in der Orthopädie adaptiert und eingesetzt werden kann. Auf diese Weise könnten Menschen auf der ganzen Welt, die ein Körperteil verloren haben, ein Stück Lebensqualität zurückerhalten. Derzeit arbeitet die Abteilung »Generative Fertigung« unter der Leitung von Steve Rommel daran, das FDM-Verfahren weiterzuentwickeln.

Fachlicher Ansprechpartner
Jannis Breuninger | Telefon +49 711 970-1808 | jannis.breuninger@ipa.fraunhofer.de | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Weitere Informationen:

http://www.ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Neue Methode führt zehnmal schneller zum Corona-Testergebnis
07.07.2020 | Universität Bielefeld

nachricht Neues Verfahren ermöglicht Lithiumabbau in Deutschland
01.07.2020 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics